

ATEX-konforme Bauteile

EXCONTROL TVR-Ex

ATEX-Zertifizierung

Zur Regelung variabler Volumenströme in explosionsgefährdeten Bereichen nach ATEX

Runde Volumenstrom-Regelgeräte für variable Volumenströme, nach ATEX für explosionsgeschützte Bereiche zugelassen und zertifiziert

- ATEX-konforme Konstruktion und Bauteile
- Zugelassen für alle Gase, Nebel, Dämpfe in Zone 1 und 2, mit elektronischer Regelung zusätzlich für Stäube in Zone 21 und 22
- Für Zuluft- oder Abluftregelung sowie als Differenzdruckregler geeignet
- Elektronische oder pneumatische Regelkomponenten
- Leckluftstrom bei geschlossener Regelklappe nach EN 1751, bis Klasse 4
- Gehäuse-Leckluftstrom nach EN 1751, Klasse C

Optionale Ausstattung und Zubehör

- Federrücklaufantrieb
- Hilfsschalter mit einstellbaren Schaltpunkten zur Endlagenerfassung

Allgemeine Informationen	2	Bestellschlüssel	12
Funktion	3	Varianten	15
Technische Daten	5	Abmessungen und Gewichte	16
Schnellauslegung	7	Einbaudetails	17
Ausschreibungstext	11	Legende	19

Allgemeine Informationen

Anwendung

- Runde EXCONTROL VVS-Regelgeräte der Serie TVR-Ex zur Zuluft- oder Abluftstromregelung in variablen Volumenstromsystemen
- Für Anforderungen in explosionsgefährdeten Bereichen (ATEX)
- Volumenstromregelung im geschlossenen Regelkreis mit Hilfsenergie
- Elektronische oder pneumatische Volumenstromregelung
- Absperrung durch kundenseitige Schaltung

Besondere Merkmale

- ATEX-Kennzeichnung und Zertifizierung
- ATEX-Gerätegruppe II, zugelassen für Zonen 1, 2, elektronische Regelung zusätzlich Zonen 21 und 22
- Volumenstrommessung und -verstellung am Gerät nachträglich möglich, Konfiguration mit PC-Software

Nenngrößen

125, 160, 200, 250, 315, 400

Klassifizierung

Elektronische Regelung: Gerätegruppe II

- Zonen 1 und 2 (Stoffgruppe Gase):II 2 G c II T5: 10 °C 50 °C und T6: 10 °C 60 °C
- Zonen 21 und 22 (Stoffgruppe Stäube):II 2 D c II 80 °C
 Pneumatische Regelung: Gerätegruppe II
- Zonen 1 und 2 (Stoffgruppe Gase):II 2 G c II T5: 10 °C 50 °C und T6: 10 °C 60 °C

Ausführung

- Verzinktes Stahlblech
- P1: Innenrohr pulverbeschichtet, silber (RAL 7001)
- A2: Innenrohr Edelstahl

Bauteile und Eigenschaften

- Inbetriebnahmebereites Gerät, bestehend aus mechanischen Bauteilen und Regelkomponenten
- Mittelwert bildender Differenzdrucksensor zur Luftstrommessung
- Regelklappe
- Anschluss für Potentialausgleich
- Leitungsdurchführungen in explosionsgeschützter Ausführung
- ATEX-konforme Regelkomponenten werkseitig montiert, verschlaucht und verdrahtet
- Jedes Gerät werkseitig auf speziellem lufttechnischen Prüfstand geprüft
- Dokumentation der Daten mit einer Prüfplakette auf dem Gerät
- Hohe Regelgenauigkeit der eingestellten Volumenströme (auch bei Bogenanschluss mit R = 1D)

Anbauteile

- Elektronische Regelung
- Pneumatische Regelung

Varianten

- Stellantrieb mit Hilfsschalter zur Endlagenerfassung
- Federrücklaufantrieb

Technische Daten

- Nenngrößen: 125 400 mm
- Volumenstrombereich: 15 1680 l/s oder 54 6048 m³/h
- Volumenstromregelbereich: ca. 15 100 % vom Nennvolumenstrom
- Maximal zulässige Druckdifferenz: 1000 Pa
- Betriebstemperatur: 10 50 °C

Ergänzende Produkte

 Rohrschalldämpfer Serie CA/CAH (für DE, CH) sowie CAH (für EMEA) für hohe akustische Anforderungen

Konstruktionsmerkmale

- Konstruktion und Auswahl der Materialien entsprechen den Kriterien europäischer Richtlinien, kurz ATEX (Atmosphére explosible)
- Rohrstutzen mit Lippendichtung passend f
 ür runde Luftleitungen nach EN 1506 oder EN 13180

Materialien und Oberflächen

- Gehäuse und Innenrohr aus verzinktem Stahlblech
- Regelkomponenten aus Aluminiumdruckguss (Pneumatische Regelung: Kunststoff)
- Gleitlager aus Kunststoff
- Stellklappe aus Edelstahl mit Dichtung aus Kunststoff TPE
- Differenzdrucksensor aus Aluminium
- P1: luftführendes Innenrohr mit Pulverbeschichtung
- A2: luftführendes Innenrohr aus Edelstahl

Normen und Richtlinien

 EU-Richtlinie 2014/34/EU: Geräte und Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen

Instandhaltung

- Wartungsfrei, da aufgrund der Konstruktion und der verwendeten Materialien keine Abnutzung erfolgt
- Nullpunktabgleich des statischen Differenzdrucktransmitters einmal j\u00e4hrlich empfohlen (bei elektronischer Regelung)

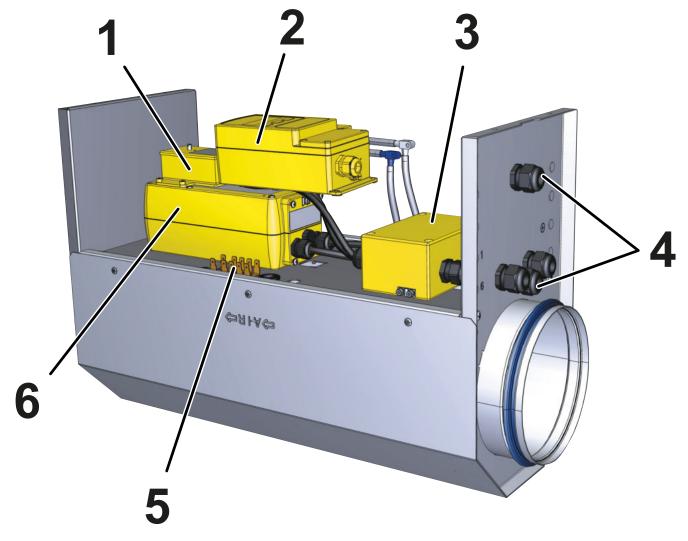
Inbetriebnahme

- Regler werkseitig voreingestellt
- Evtl. bauseitige Anpassung von Einstellungen bei Inbetriebnahme erforderlich

Funktion

Zur Messung des Volumenstromes enthält das VVS-Regelgerät einen Differenzdrucksensor.

Die Regelkomponenten (Anbauteile) umfassen einen Differenzdrucktransmitter zur Umformung des Differenzdrucks (Wirkdruck) in ein elektrisches Signal, einen Regler und einen Stellantrieb.

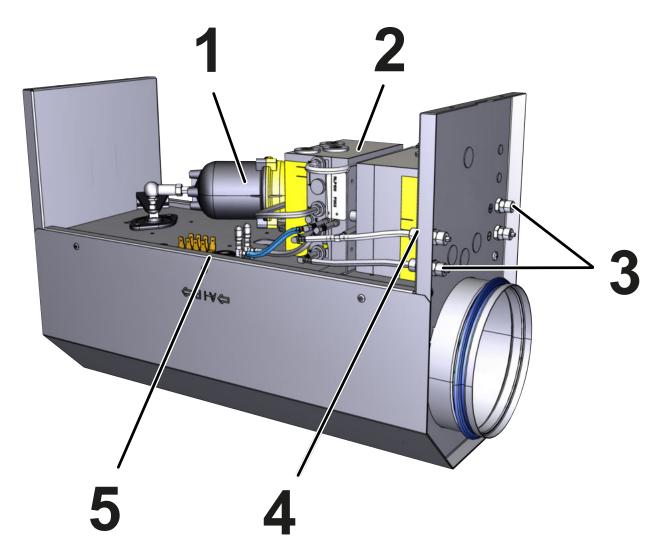

Der Sollwert kommt in den meisten Anwendungsfällen von einem Raumtemperaturregler, der außerhalb des explosionsgefährdeten Bereiches platziert wird.

Der Regler vergleicht den Istwert mit dem Sollwert und verändert bei Abweichungen das Führungssignal des

Klappenstellantriebes.

Der Anschluss der Versorgungsspannung und der Spannungssignale erfolgt explosionsgeschützt in einem Klemmenkasten.

Schematische Darstellung TVR-Ex elektronisch (Anbauteile S1*)



- ① Hilfsschalter
- ② Statischer Differenzdrucktransmitter
- ③ Klemmenkasten
- ④ Leitungsdurchführung
- ⑤ Potentialausgleich
- Stellantrieb

Schematische Darstellung TVR-Ex pneumatisch

- ① Stellantrieb
- ② Raumdruckregler
- ③ Pneumatische Anschlüsse
- 4 Volumenstromregler
- ⑤ Potentialausgleich

Technische Daten

TVR-Ex mit elektrischen Anbauteilen

Nenngrößen	125 – 400 mm		
Volumenstrombereich	15 – 1680 l/s oder 54 – 6048 m³/h		
Volumenstromregelbereich	ca. 15 – 100 % vom Nennvolumenstrom		
maximal zulässige Druckdifferenz	1000 Pa		
Betriebstemperatur	10 – 50 °C		

TVR-Ex mit pneumatischen Anbauteilen

Terr Ex title produitation on the action of				
Betriebsdruck	1,3 bar ± 0,1 bar			
Luftverbrauch Volumenstromregelung	50 ln/h			
Luftverbrauch Druck-Volumenstrom-Kaskade	100 ln/h			
Steuerdruck	0,2 – 1,0 bar			
Maximal zulässiger Druck	1,5 bar			
Schutzart	IP 42			
Druckluft	Öl-, wasser- und staubfreie Instrumentendruckluft			

Elektronisch mit Anbauteil S1S, S1F, S1X, S1Y

\$1\$	Schischek: Regler ExReg-V-300-A + Stellantrieb ExMax-5.10-CY
S1F	Schischek: Regler ExReg-V-300-A + Federrücklaufantrieb ExMax-5.10-CYF
S1X	Schischek: Regler ExReg-V-300-A + Stellantrieb ExMax-5.10-CY + Zubehör ExSwitch und ExBox
S1Y	Schischek: Regler ExReg-V-300-A + Federrücklaufantrieb ExMax-5.10-CYF + Zubehör ExSwitch und ExBox
Versorgungsspannung	24 V AC + 15% (24,0 27,6 V AC), 50/60 Hz
Versorgungsspannung	24 V DC + 15% (24,0 27,6 V DC)
Schutzklasse	III (Schutzkleinspannung)
EG-Konformität	ATEX nach 2014/34/EU, EMV nach 2014/30/EU, Niederspannung nach 2014/35/EU

Die hier abgebildeten Angaben dienen einer ersten Übersicht.

Maßgeblich relevant für die elektronischen Anbauteile sind die technischen Daten in der Produktdokumentation des Herstellers: Schischek GmbH in 90579 Langenzenn, Deutschland , www.schischek.com, info@schischek.com Insbesondere gilt für den ExReg-V Volumenstromregler - Dokumentation ab Version V04 03.06.2022

Elektronisch mit Anbauteil TES, TEF, TEX, TEY Komponenten

Rompononton	
TES	TROX Regler TCU3 + Schischek Komponenten: Differenzdrucktransmitter ExCos-P, Stellantrieb
	ExMax-5.10-Y
	TROX: Regler TCU3 +
TEF	Schischek Komponenten: Differenzdrucktransmitter ExCos-P,
	Federrücklaufantrieb ExMax-5.10-YF
	TROX: Regler TCU3 +
TEX	Schischek Komponenten: Differenzdrucktransmitter ExCos-P +
	Stellantrieb ExMax-5.10-Y + Zubehör ExSwitch und ExBox
	TROX: Regler TCU3 +
TEY	Schischek Komponenten: Differenzdrucktransmitter ExCos-P +
	Federrücklaufantrieb ExMax-5.10-YF + Zubehör ExSwitch und ExBox

Regler TCU3 (TROX)

Region 1900 (TROX)	
Versorgungsspannung	24 V AC ±15 % (20,4 27,6 V), 50/60 Hz
Versorgungsspannung	24 V DC ±15 % (20,4 27,6 V)
V	optional: 230 V AC Netzversorgung (nur mit Erweiterungsmoduls EM-
Versorgungsspannung	TRF)
Anschlussleistung	8 VA
Schutzgrad	IP20
Schutzklasse	III (Schutzkleinspannung), bei Versorgung mit 24 V AC/DC
Manhana	in geschlossenen Räumen, außerhalb der Ex-Zone zu montieren (Regler
Montage	TCU3 ist daher ortsfest abgesetzt vom Regelgerät TVR-Ex zu montieren)
EG-Konformität	EMV nach 2014/30/EU

Differenzdrucktransmitter (Schischek)

Versorgungsspannung	24 V AC ±20 % (19,2 28,8 V), 50/60 Hz
Versorgungsspannung	24 V DC ±20 % (19,2 28,8 V)
Schutzklasse	I (geerdet)
Schutzart	IP66
EG-Konformität	ATEX nach 2014/34/EU, EMV nach 2014/30/EU

Stellantrieb/Federrücklaufantrieb (Schischek)

otenanti lebri ederi dekladianti leb (ocinischek)	
Versorgungsspannung	24 240 V AC/DC ± 10 %, selbstadaptiv, Frequenz 5060 Hz ± 20 % (*1)
Versorgungsspannung	wir empfehlen für den Stellantrrieb die Versorgung mit Netzspannung
Anschlussleistung	Zusatzinformationen in der Schischek-Dokumentation beachten
Schutzklasse	I (geerdet)
Schutzart	IP66
EG-Konformität	ATEX nach 2014/34/EU, EMV nach 2014/30/EU, Niederspannung nach 2014/35/EU

(*1) Wir empfehlen für die Stellantriebe eine Versorgung mit 230 V AC Netzspannung.

Die hier abgebildete Angaben zu den Schischek Anbauteilen dienen einer ersten Übersicht.

Maßgeblich relevant sind die technischen Daten in der Produktdokumentation des Herstellers:

Schischek GmbH in 90579 Langenzenn, Deutschland www.schischek.com, info@schischek.com

PD-09/2022 - DE/de

Schnellauslegung

Die Schnellauslegung gibt einen guten Überblick über die zu erwartenden Schalldruckpegel im Raum. Ungefähre Zwischenwerte können interpoliert werden. Zu exakten Zwischenwerten und Spektraldaten führt die Auslegung mit unserem Auslegungsprogramm Easy Product Finder.

Die Auswahl der Nenngröße erfolgt zunächst nach den gegebenen Volumenströmen $q_{v_{min}}$ und $q_{v_{max}}$. In der Schnellauslegung sind praxisgerechte Dämpfungswerte berücksichtigt. Liegt der Schalldruckpegel über dem zulässigen Wert, sind ein größeres Volumenstrom-Regelgerät und/oder ein Schalldämpfer erforderlich.

Volumenstrombereiche

Die Mindestdruckdifferenz der VVS-Regelgeräte ist eine wichtige Größe zur Planung des Kanalnetzes und zur Dimensionierung des Ventilators einschließlich der Drehzahlsteuerung. Es muss sichergestellt sein, dass unter allen Betriebsbedingungen an allen Regelgeräten ein ausreichender Kanaldruck ansteht. Der Messpunkt oder die Messpunkte für die Drehzahlsteuerung des Ventilators sind dementsprechend auszuwählen. Die Volumenstrombereiche von VVS- Regelgeräten sind von der Nenngröße und von der verwendeten Regelkomponente (Anbauteil) abhängig. Die dargestellten Tabellenwerte sind die Minimal- und Maximalwerte des VVS- Regelgerätes. Für bestimmte Regelkomponenten gelten eingeschränkte Bereiche. Dies gilt insbesondere für Regelkomponenten mit statischem Differenzdrucktransmitter. Volumenstrombereiche für alle Regelkomponenten enthält das Auslegungsprogramm Easy Product Finder.

TVR-Ex – elektronisch, Volumenstrombereiche und Mindest-Druckdifferenzen

NG			1	2	3	4	
ING	q, [l/s]	q _v [m³/h]		Δp _{st min} [Pa]			Δq, [±%]
125	22	79	5	5	5	5	15
125	60	216	15	20	20	20	7
125	105	378	45	50	55	60	6
125	150	540	90	100	110	115	5
160	35	126	5	5	5	5	15
160	100	360	15	15	15	15	8
160	175	630	35	40	45	45	7
160	250	900	70	80	85	95	5
200	60	216	5	5	5	5	15
200	160	576	15	15	15	15	7
200	280	1008	35	35	40	40	5
200	405	1458	65	70	75	80	5
250	90	324	5	5	5	5	15
250	245	882	10	10	10	10	7
250	430	1548	25	25	30	35	5
250	615	2214	45	50	55	65	5
315	145	522	5	5	5	5	15
315	410	1476	5	10	10	10	7
315	720	2592	15	20	20	20	7
315	1030	3708	30	35	40	40	5
400	240	864	5	5	5	5	15
400	670	2412	5	5	5	5	7
400	1175	4230	15	15	15	15	6
400	1680	6048	25	30	30	35	5

① TVR-Ex

② TVR-Ex mit Rohrschalldämpfer CA bzw. CAH, Packungsdicke 50 mm, Länge 500 mm

③ TVR-Ex mit Rohrschalldämpfer CA bzw. CAH, Packungsdicke 50 mm, Länge 1000 mm

④ TVR-Ex mit Rohrschalldämpfer CA bzw. CAH, Packungsdicke 50 mm, Länge 1500 mm

TVR-Ex – pneumatisch, Volumenstrombereiche und Mindest-Druckdifferenzen

NG			1	2	3	4	
NG	q, [l/s]	q _v [m³/h]		Δp_{stm}	_{in} [Pa]		Δq _v [±%]
125	15	54	5	5	5	5	15
125	40	144	10	10	10	10	10
125	70	252	20	25	25	25	7
125	100	360	40	45	50	55	5
160	25	90	5	5	5	5	15
160	75	270	10	10	10	10	10
160	125	450	20	20	25	25	7
160	175	630	35	40	45	45	5
200	40	144	5	5	5	5	15
200	125	450	10	10	10	10	10
200	210	756	20	20	25	25	7
200	300	1080	40	40	45	45	5
250	60	216	5	5	5	5	15
250	200	720	5	10	10	10	10
250	340	1224	15	15	20	20	7
250	475	1710	30	30	35	40	5
315	105	378	5	5	5	5	15
315	330	1188	5	5	5	5	10
315	555	1998	10	10	15	15	7
315	775	2790	20	20	25	25	5
400	170	612	5	5	5	5	15
400	545	1962	5	5	5	5	10
400	920	3312	10	10	10	10	7
400	1300	4680	15	20	20	20	5

① TVR-Ex

② TVR-Ex mit Rohrschalldämpfer CA bzw. CAH, Packungsdicke 50 mm, Länge 500 mm

③ TVR-Ex mit Rohrschalldämpfer CA bzw. CAH, Packungsdicke 50 mm, Länge 1000 mm

④ TVR-Ex mit Rohrschalldämpfer CA bzw. CAH, Packungsdicke 50 mm, Länge 1500 mm

TVR-Ex, elektronisch, Schalldruckpegel bei Druckdifferenz 150 Pa

				Strömung	Abstrahlgeräusch		
NG	p _v [l/s]	p _v [m3/h]	1	2	3	4	1
			$L_{PA}[dB(A)]$		L_{PA1} [dB(A)]		L _{PA2} [dB(A)]
125	22	79	36	25	16	<15	16
125	60	216	45	36	30	28	25
125	105	378	49	40	34	32	31
125	150	540	52	41	34	32	35
160	35	126	41	30	22	19	22
160	100	360	47	39	34	31	28
160	175	630	50	42	37	34	32
160	250	900	53	44	39	36	37
200	60	216	41	32	24	22	21
200	160	576	47	40	34	33	29
200	280	1008	50	44	40	38	32
200	405	1458	54	45	39	38	38
250	90	324	38	30	24	22	22
250	245	882	47	40	34	32	35
250	430	1548	48	42	38	37	37
250	615	2214	52	44	38	37	42
315	145	522	43	36	29	26	29
315	410	1476	47	42	35	34	39
315	720	2592	49	44	39	38	42
315	1030	3708	53	48	42	41	46
400	240	864	43	36	29	26	31
400	670	2412	44	38	32	30	37
400	1175	4230	47	42	36	35	41
400	1680	6048	50	44	38	37	46

① TVR-Ex

② TVR-Ex mit Rohrschalldämpfer CA bzw. CAH, Packungsdicke 50 mm, Länge 500 mm

③ TVR-Ex mit Rohrschalldämpfer CA bzw. CAH, Packungsdicke 50 mm, Länge 1000 mm

④ TVR-Ex mit Rohrschalldämpfer CA bzw. CAH, Packungsdicke 50 mm, Länge 1500 mm

TVR-Ex, pneumatisch, Schalldruckpegel bei Druckdifferenz 150 Pa

			Strömungsgeräusch				Abstrahlgeräusch
NG	q _v [l/s]	q _v [m³/h]	1	2	3	4	1
			L_{PA} [dB(A)]		L_{PA1} [dB(A)]		L _{PA2} [dB(A)]
125	22	79	36	25	16	<15	16
125	60	216	45	36	30	28	25
125	105	378	49	40	34	32	31
125	150	540	52	41	34	32	35
160	35	126	41	30	22	19	22
160	100	360	47	39	34	31	28
160	175	630	50	42	37	34	32
160	250	900	53	44	39	36	37
200	60	216	41	32	24	22	21
200	160	576	47	40	34	33	29
200	280	1008	50	44	40	38	32
200	405	1458	54	45	39	38	38
250	90	324	38	30	24	22	22
250	245	882	47	40	34	32	35
250	430	1548	48	42	38	37	37
250	615	2214	52	44	38	37	42
315	145	522	43	36	29	26	29
315	410	1476	47	42	35	34	39
315	720	2592	49	44	39	38	42
315	1030	3708	53	48	42	41	46
400	240	864	43	36	29	26	31
400	670	2412	44	38	32	30	37
400	1175	4230	47	42	36	35	41
400	1680	6048	50	44	38	37	46

① TVR-Ex

② TVR-Ex mit Rohrschalldämpfer CA bzw. CAH, Packungsdicke 50 mm, Länge 500 mm

③ TVR-Ex mit Rohrschalldämpfer CA bzw. CAH, Packungsdicke 50 mm, Länge 1000 mm

④ TVR-Ex mit Rohrschalldämpfer CA bzw. CAH, Packungsdicke 50 mm, Länge 1500 mm

Ausschreibungstext

Dieser Ausschreibungstext beschreibt die generellen Eigenschaften des Produkts. Texte für Varianten generiert unser Auslegungsprogramm Easy Product Finder.

Ausschreibungstext

VVS-Regelgeräte für variable und konstante

Volumenstromsysteme in explosionsgefährdeten Bereichen, für Zuluft oder Abluft, in sechs Nenngrößen.

Hohe Regelgenauigkeit der eingestellten Volumenströme (auch bei Bogenanschluss mit R = 1D).

Inbetriebnahmebereites Gerät, bestehend aus den mechanischen Bauteilen, den elektronischen

Regelkomponenten und Bauteilen zum Potentialausgleich und Explosionsschutz. Geräte enthalten einen Mittelwert bildenden Differenzdrucksensor zur Volumenstrommessung und eine Regelklappe.

Regelkomponenten werkseitig montiert, verschlaucht und verdrahtet.

Differenzdrucksensor mit Messbohrungen 3 mm, dadurch unempfindlich gegen Verschmutzung.

Rohrstutzen mit Lippendichtung, passend für Luftleitungen nach EN 1506 oder EN 13180.

Leckluftstrom bei geschlossener Regelklappe nach EN 1751, Klasse 4 (Nenngrößen 125 und 160, Klasse 3). Gehäuse-Leckluftstrom nach EN 1751, Klasse C.

Besondere Merkmale

- ATEX-Kennzeichnung und Zertifizierung
- ATEX-Gerätegruppe II, zugelassen für Zonen 1, 2, elektronische Regelung zusätzlich Zonen 21 und 22
- Volumenstrommessung und -verstellung am Gerät nachträglich möglich, Konfiguration mit PC-Software

Materialien und Oberflächen

- Gehäuse und Innenrohr aus verzinktem Stahlblech
- Regelkomponenten aus Aluminiumdruckguss (Pneumatische Regelung: Kunststoff)
- Gleitlager aus Kunststoff
- Stellklappe aus Edelstahl mit Dichtung aus Kunststoff TPE
- Differenzdrucksensor aus Aluminium
- P1: luftführendes Innenrohr mit Pulverbeschichtung

A2: luftführendes Innenrohr aus Edelstahl

Ausführung

- Verzinktes Stahlblech
- P1: Innenrohr pulverbeschichtet, silbergrau (RAL 7001)
- A2: Innenrohr Edelstahl

Technische Daten

- Nenngrößen: 125 400 mm
- Volumenstrombereich: 15 1680 l/s oder 54 6048 m³/h
- Volumenstromregelbereich: Ca. 15 100 % vom Nennvolumenstrom
- Maximal zulässige Druckdifferenz: 1000 Pa

Anbauteile

Variable Volumenstrom-Regelung mit elektronischem Regler zur Aufschaltung einer Führungsgröße und einem Istwertsignal zur Einbindung in Gebäudeleittechnik.

- Versorgungsspannung 24 V AC/DC (Regler/ Differenzdrucktransmitter)
- Versorgungsspannung 24 V AC/DC (Stellantrieb f
 ür Anbauteil S1*)
- Versorgungsspannung 230 V AC (Stellantrieb f
 ür Anbauteil TE*)
- Signalspannungen 0 10 V DC
- Istwertsignal auf Nennvolumenstrom bezogen, dadurch vereinfachte Inbetriebnahme und nachträgliche Verstellung
- Volumenstromregelbereich ca. 15 100 % vom Nennvolumenstrom
- Stellantrieb mit einstellbarer Laufzeit von 7,5 120 s

Auslegungsdaten

- q_v [m³/h]
- ∆p_{st} [Pa]

Strömungsgeräusch

L_{PA} [dB(A)]

Abstrahlgeräusch

L_{PA} [dB(A)]

Bestellschlüssel

TVR-Ex mit ATEX Regelkomponente Universal

1 Serie

TVR-Ex VVS-Regelgerät für explosionsgefährdete Bereiche

2 Material

Keine Eintragung: verzinktes Stahlblech

P1 Innenrohr pulverbeschichtet, RAL 7001 (silbergrau)

A2 Innenrohr Edelstahl

3 Nenngröße [mm]

125, 160, 200, 250, 315, 400

4 Anbauteile (Regelkomponente)

Elektronische Regelung

\$1\$ Regler ExReg und Stellantrieb

S1F Regler ExReg und Federrücklaufantrieb

S1X Regler ExReg, Stellantrieb und Hilfsschalter

S1Y Regler ExReg, Federrücklaufantrieb und Hilfsschalter

5 Betriebsart

V variabler Betrieb (einstellbarer Sollwertbereich)

6 Signalspannungsbereich

Für das Istwert- und Sollwertsignal

0 0 – 10 V DC

2 2 - 10 V DC

7 Betriebswerte zur werkseitigen Einstellung

Volumenstrom [m³/h oder l/s]

 $q_{\nu_{\text{min}}} - q_{\nu_{\text{max}}}$

8 Klappenstellung

Nur für Federrücklaufantriebe (S1F und S1Y)

NO stromlos AUF (Normally Open)

NC stromlos ZU (Normally Closed)

Bestellbeispiel: TVR-Ex-P1/125/S1F/V0/200-400[m³/h]/NO

Serie	TVR-Ex
Material	Innenrohr pulverbeschichtet, RAL 7001 (silbergrau)
Nenngröße [mm]	125
Anbauteile (Regelkomponente)	Regler ExReg und Federrücklaufantrieb
Betriebsart	variabler Betrieb (einstellbarer Sollwertbereich)
Signalspannungsbereich	0 – 10 V DC
Betriebswerte zur werkseitigen Einstellung	200 – 400 [m³/h]
Klappenstellung	stromlos AUF (Normally Open)

Bestellbeispiel: TVR-Ex/200/S1S/V0/400-1200[m³/h]

Serie	TVR-Ex
Material	verzinktes Stahlblech
Nenngröße [mm]	200
Anbauteile (Regelkomponente)	Regler ExReg und Stellantrieb
Betriebsart	variabler Betrieb (einstellbarer Sollwertbereich)
Signalspannungsbereich	0 – 10 V DC
Betriebswerte zur werkseitigen Einstellung	400 – 1200 [m³/h]
Klappenstellung	-

TVR-Ex mit ATEX Regelkomponente auf Basis TCU3

1 Serie

TVR-Ex VVS-Regelgerät für explosionsgefährdete Bereiche

2 Material

Keine Eintragung: verzinktes Stahlblech

P1 Innenrohr pulverbeschichtet, RAL 7001 (silbergrau)

A2 Innenrohr Edelstahl

3 Nenngröße [mm] 125, 160, 200, 250, 315, 400

4 Anbauteile (Regelkomponente)

Elektronische Regelung (außerhalb der Ex-Zone montiert)

TES Regler TCU3 und Stellantrieb

TEF Regler TCU3 und Federrücklaufantrieb

TEX Regler TCU3, Stellantrieb und Hilfsschalter

TEY Regler TCU3, Federrücklaufantrieb und Hilfsschalter

5 Gerätefunktion

Einzelregelung

SC Einzelregler Zuluft (Supply Controller)

EC Einzelregler Abluft (Extract Controller)

6 Externe Volumenstromvorgabe

E0 variabel, Signalspannungsbereich 0 – 10 V DC

E2 variabel, Signalspannungsbereich 2 – 10 V DC

2P 2 Schaltstufen (für einen kundenseitigen Schaltkontakt)

3P 3 Schaltstufen (für zwei kundenseitige Schaltkontakte)

F Festwert, ein Sollwert (ohne externe Beschaltung)

7 Erweiterungen der Anbaugruppe

Option 1: Stromversorgung

Keine Eintragung: 24 V AC/DC Versorgung

T mit EM-TRF für 230 V AC Netzversorgung

U mit EM-TRF-USV (inkl. Akku) für 230 V AC

unterbrechungsfreie Netzversorgung (USV)

Option 2: digitale Kommunikationsschnittstelle

Keine Eintragung: ohne digitale Kommunikationsschnittstelle

B mit EM-BAC-MOD für BACnet MS/TP

M mit EM-BAC-MOD für Modbus RTU

I mit EM-IP für BACnet IP, Modbus IP und Webserver

 ${f R}$ mit EM-IP (inkl. Echtzeituhr, RTC) für BACnet IP, Modbus IP

und Webserver

8 Betriebswerte zur werkseitigen Einstellung

Volumenstrom [m³/h oder l/s]

Abhängig von: externe Volumenstromvorgabe

 $E0: q_{v_{min}} - q_{v_{max}}$

 $E2: q_{v_{min}} - q_{v_{max}}$

2P: q_{v1}/q_{v2}

3P: $q_{v_1}/q_{v_2}/q_{v_3}$

F: q_{v1}

9 Klappenstellung

Nur für Federrücklaufantriebe (TEF und TEY)

NO stromlos AUF (Normally Open)

NC stromlos ZU (Normally Closed)

Bestellbeispiel: TVR-Ex-P1/160/TEF/EC-E0/M/200-400[m³/h]/NO

Serie	TVR-Ex
Material	Innenrohr pulverbeschichtet, RAL 7001 (silbergrau)
Nenngröße [mm]	160
Anbauteile (Regelkomponente)	Regler TCU3 abgesetzt außerhalb der Ex-Zone
Antrieb	Federrücklaufantrieb
Gerätefunktion	Einzelregler Abluft (Extract Controller)
Externe Volumenstromvorgabe	variabel, Signalspannungsbereich 0 – 10 V DC
Erweiterungen der Anbaugruppe	24 V AC/DC Stromversorgung, EM-BAC-MOD für Modbus RTU
	Kommunikationsschnittstelle
Betriebswerte zur werkseitigen Einstellung	200 – 400 [m³/h]
Klappenstellung	stromlos AUF (Normally Open)

TVR-Ex mit pneumatischem Anbauteilen

1 Serie

TVR-Ex VVS-Regelgerät für explosionsgefährdete Bereiche

2 Material

Keine Eintragung: verzinktes Stahlblech

P1 Innenrohr pulverbeschichtet, RAL 7001 (silbergrau)

A2 Innenrohr Edelstahl

3 Nenngröße [mm]

125, 160, 200, 250, 315, 400

4 Anbauteile (Regelkomponente)

Pneumatische Regelung

PG5 Volumenstromregler mit Stellantrieb

PJ5 Druck-Volumenstrom-Kaskade (± 20 Pa)

PL5 Druck-Volumenstrom-Kaskade (± 50 Pa)

Bestellbeispiel: TVR-Ex-P1/125/PG5/V/200-400[m³/h]/NO

Serie Material

Nenngröße [mm]

Anbauteile (Regelkomponente)

Betriebsart

Betriebswerte zur werkseitigen Einstellung

Klappenstellung

5 Betriebsart

V variabler Betrieb (einstellbarer Sollwertbereich)

6 Betriebswerte zur werkseitigen Einstellung

Volumenstrom [m³/h oder l/s]

Für Anbauteil PG5

 $Volumenstrom \; q_{\nu_{min}} - q_{\nu_{max}}$

Für Anbauteile PJ5 und PL5

Druck-Volumenstrom-Kaskade $q_{v_{min}}$ – $q_{v_{max}}$ / Δp_{soll}

7 Klappenstellung

Pneumatische Stellantriebe

NO drucklos AUF (Normally Open)

NC drucklos ZU (Normally Closed)

_			_	_	
	١/	₽.	_ -	Ξx	

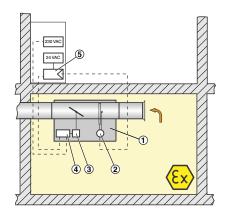
Innenrohr pulverbeschichtet, RAL 7001 (silbergrau)

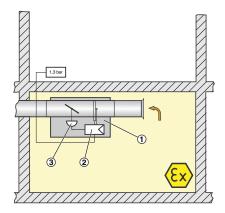
125

Volumenstromregler mit Stellantrieb

variabler Betrieb (einstellbarer Sollwertbereich)

200 – 400 [m³/h]

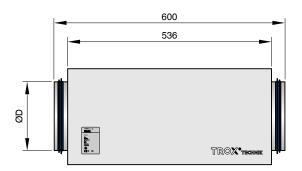

stromlos AUF (Normally Open)

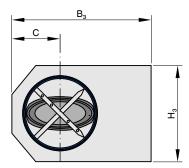

Varianten

Anlagenschema TVR-Ex elektronisch (Anbauteile TE*)

- ① VVS-Regelgerät
- ② Statischer Differenzdrucktransmitter
- 3 Stellantrieb
- 4 Klemmenkasten
- ⑤ Elektronischer Volumenstromregler

Anlagenschema TVR-Ex pneumatisch


- ① VVS-Regelgerät
- ② Pneumatischer Volumenstromregler
- 3 Pneumatischer Stellantrieb



Abmessungen und Gewichte

TVR-Ex

TVR-Ex

I VIX EX				
NG	ØD	$B_{\scriptscriptstyle 3}$	H_3	С
125	124	372	221	129
160	159	372	221	111
200	199	463	311	182
250	249	463	311	157
315	314	627	461	289
400	399	627	461	246

TVR-Ex

TVICEA			
NG	TVR-Ex//TEx (1)	TVR-Ex//Pxx (2)	
ING	kg		
125	17,5	15,5	
160	17,5	15,5	
200	19,0	17,0	
250	19,0	17,0	
315	23,0	21,0	
400	23,0	21,0	

- ① TVR-Ex elektronische Regelung (Anbauteile TE*)
- ② TVR-Ex pneumatische Regelung

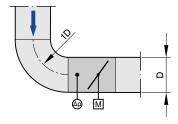
Einbaudetails

Einbau und Inbetriebnahme

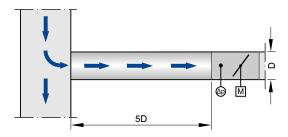
- Aufgrund der werkseitig eingestellten Volumenströme ist stets darauf zu achten, dass der Einbau der Regelgeräte nur an den vorgesehenen Stellen erfolgt
- Anschlüsse Potentialausgleich kundenseitig mit geeigneten Leitungen verbinden
- Einstellparameter des Reglers ggf. bauseits an Projektgegebenheiten anpassen
- Betriebsparameter kundenseitig anpassbar
- Für Varianten mit Regelkomponente TCU3 (Anbauteil TE*) sind passende Servictools erforderlich

Elektronische Regelung (Anbauteile S1* bzw. TE*)

- Lageunabhängig
- Nullpunktabgleich durchführen


Pneumatische Regelung (Anbauteile P**)

Geräteaufkleber zur Einbaulage beachten

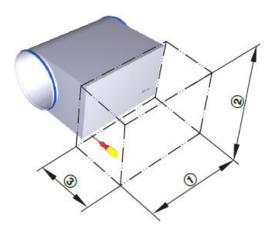

Anströmbedingungen

Die Volumenstromgenauigkeit Δq_v gilt für gerade Anströmung. Formstücke wie Bögen, Abzweige oder Querschnittsveränderungen verursachen Turbulenzen, die die Messung beeinflussen können. Bei Ausführung von Luftleitungsanschlüssen, wie z. B. dem Abzweig von einer Hauptleitung, ist die EN 1505 zu beachten. Für manche Einbausituationen sind gerade Anströmlängen erforderlich.

Bogenanschluss

Abzweig von einer Hauptleitung

Ein Bogen mit mindestens 1D Krümmungsradius – ohne zusätzliche gerade Anströmlänge vor dem VVS-Regelgerät – hat keinen nennenswerten Einfluss auf die Volumenstromgenauigkeit.


Das Abzweigen einer Strömung von einer Hauptleitung verursacht starke Turbulenzen. Die angegebene Volumenstromgenauigkeit $\Delta_{\scriptscriptstyle qv}$ ist nur mit mindestens 5D gerader Anströmlänge zu erreichen.

Platzbedarf für Inbetriebnahme und Instandhaltung

Um die Arbeiten zur Inbetriebnahme und Instandhaltung zu ermöglichen, ausreichenden Bauraum im Bereich der Anbauteile freihalten. Gegebenenfalls sind Revisionsöffnungen in ausreichender Größe erforderlich, sodass die Anbauteile leicht zugänglich sind.

Platzbedarf

rialZbedaii				
NG	①	2	3	
125	600	220	300	
160	600	220	300	
200	600	310	300	
250	600	310	300	
315	600	460	300	
400	600	460	300	

Legende

Maßangaben für eckige Geräte

B [mm]

Breite der Luftleitung

B, [mm]

Lochabstand im Luftleitungsprofil (Breite)

B, [mm]

Außenabmessung des Luftleitungsprofils (Breite)

H [mm]

Höhe der Luftleitung

H₁ [mm]

Lochabstand im Luftleitungsprofil (Höhe)

 H_2 [mm]

Außenabmessung des Luftleitungsprofils (Höhe)

Maßangaben für runde Geräte

ØD [mm]

Grundgeräte aus Stahlblech: Außendurchmesser des Anschlussstutzens, Grundgeräte aus Kunststoff: Innendurchmesser des Anschlussstutzens

ØD₁ [mm]

Lochkreisdurchmesser von Flanschen

 $\mathbf{ØD}_{2}$ [mm]

Außendurchmesser von Flanschen

L [mm]

Gerätelänge einschließlich Anschlussstutzen

L₁ [mm]

Gehäuse- oder Dämmschalenlänge

ո []

Anzahl Schraubenlöcher von Flanschen

T [mm]

Flanschdicke

Allgemeingültige Angaben

m [kg]

Gerätegewicht (Masse) einschließlich der minimal notwendigen Anbauteile (Regelkomponente)

NG [mm]

Nenngröße

f_m [Hz]

Mittenfrequenz des Oktavbandes

 L_{PA} [dB(A)]

Schalldruckpegel des Strömungsgeräusches des KVS-Regelgerätes, A-bewertet, Systemdämpfung berücksichtigt

 L_{PA1} [dB(A)]

Schalldruckpegel des Strömungsgeräusches des KVS-Regelgerätes mit Zusatzschalldämpfer, A-bewertet, Systemdämpfung berücksichtigt

 L_{PA2} [dB(A)]

Schalldruckpegel des Abstrahlgeräusches des KVS-Regelgerätes, A-bewertet, Systemdämpfung berücksichtigt

 L_{PA3} [dB(A)]

Schalldruckpegel des Abstrahlgeräusches des KVS-Regelgerätes mit Dämmschale, A-bewertet, Systemdämpfung berücksichtigt

Hinweis zu akustischen Daten: Alle Schalldruckpegel basieren auf einem Referenzwert von 20 μ Pa.

 \mathbf{q}_{vNenn} [m³/h]; [l/s]

Nennvolumenstrom (100 %): Wert ist abhängig von Geräteserie, Nenngröße und Regelkomponente (Anbauteil). Werte im Internet und in der Produktbroschüre publiziert und im Auslegungsprogramm Easy Product Finder hinterlegt. Referenzwert zur Berechnung von Prozentwerten (z. B. q_{vmax}). Obere Grenze des Einstellbereichs und maximal möglicher Volumenstromsollwert des VVS-Regelgerätes.

q_{vmin Gerät} [m³/h]; [l/s]

Technisch minimaler Volumenstrom: Wert ist abhängig von Geräteserie, Nenngröße und Regelkomponente (Anbauteil). Werte im Auslegungsprogramm Easy Product Finder hinterlegt. Untere Grenze des Einstellbereichs und minimaler regelbarer Volumenstromsollwert des VVS-Regelgerätes. Sollwerte unterhalb q_{vmin Gerät} (wenn q_{vmin} gleich 0 eingestellt) führen je nach Regler zu instabiler Regelung oder Absperrung.

 \mathbf{q}_{vmax} [m³/h]; [l/s]

Kundenseitig einstellbare, obere Grenze des Arbeitsbereichs des VVS-Regelgerätes: $q_{\tiny vmax}$ kann nur kleiner oder gleich $q_{\tiny vNenn}$ eingestellt werden. Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet) wird dem maximalen Wert des Sollwertsignals (10 V) der eingestellte maximale Wert $(q_{\tiny vmax})$ zugeordnet (siehe Kennlinie).

q_{vmin} [m³/h]; [l/s]

Kundenseitig einstellbare, untere Grenze des Arbeitsbereichs des VVS-Regelgerätes: q_{vmin} sollte nur kleiner oder gleich q_{vmax} eingestellt werden. q_{vmin} nicht kleiner als $q_{vmin \, Gerät}$ einstellen, Regelung sonst instabil, oder die Regelklappe schließt. q_{vmin} gleich 0 ist ein gültiger Wert. Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet), wird dem minimalen Wert des Sollwertsignals (0 oder 2 V) der eingestellte minimale Wert (q_{vmin}) zugeordnet (siehe Kennlinie).

q_v [m³/h]; [l/s] Volumenstrom

∆_{av} [%]

Volumenstromgenauigkeit der eingestellten Volumenströme

Δp_{st} [Pa]

19 / 20

PD-09/2022 - DE/de

Statische Druckdifferenz

∆_{pst min} [Pa]

Statische Mindestdruckdifferenz: Die statische Mindestdruckdifferenz entspricht dem Druckverlust des VVS-Reglers bei geöffneter Regelklappe, verursacht durch Strömungswiderstände (Regelklappe). Bei zu geringer Druckdifferenz am VVS-Regler wird selbst bei geöffneter Regelklappe unter Umständen der Sollvolumenstrom nicht erreicht. Wichtige Größe zur Planung des Kanalnetzes und zur Dimensionierung des Ventilators einschließlich der Drehzahlsteuerung. Es muss sichergestellt sein, dass unter allen Betriebsbedingungen an allen Reglern eine ausreichende statische Mindestdruckdifferenz ansteht und dazu unter anderem der Messpunkt oder die Messpunkte für die Drehzahlsteuerung entsprechend ausgewählt sind.

Längenangaben

Für alle Längenangaben ohne abgebildete Maßeinheit gilt grundsätzlich die Einheit Millimeter [mm].

Grundgerät

Gerät zur Regelung eines Volumenstroms ohne angebaute Regelkomponente. Wesentliche Bestandteile sind das Gehäuse mit Sensorelement(en) zur Erfassung des Wirkdrucks und die Stellklappe zur Drosselung des Volumenstroms. Das Grundgerät wird auch als VVS-Regelgerät bezeichnet. Wichtige Unterscheidungsmerkmale: Geometrie bzw. Geräteform, Material- und Anschlussvarianten, akustische Eigenschaften (z. B. Dämmschalenoption oder integrierte Schalldämpfer), Volumenstrombereich.

Regelkomponente

An das Grundgerät montierte elektronische Einheit(en) zur Regelung des Volumenstroms oder des Kanaldrucks oder des Raumdrucks durch Anpassung der Stellklappenposition. Die elektronische Einheit besteht im Wesentlichen aus einem Regler mit Wirkdrucktransmitter (integriert oder extern) sowie einem integrierten Stellantrieb (Easy- und Compactregler) oder separaten Stellantrieb (Universal oder LABCONTROL-Regler). Wichtige Unterscheidungsmerkmale: Transmitter: dynamischer Transmitter für saubere Luft bzw. statischer Transmitter für verschmutzte Luft. Stellantrieb: Standardantrieb langsamlaufend, Federrücklaufantrieb für Sicherheitsstellung oder schnelllaufender Antrieb. Schnittstellentechnik: Analogschnittstelle oder digitale Busschnittstelle zur Aufschaltung und zum Abgriff von Signalen und Informationen.

Volumenstromregler

Bestehend aus einem Grundgerät und einer angebauten Regelkomponente.

20 / 20 PD-09/2022 - DE/de