

Busschnittstelle Modbus RTU

Regelkomponente für Serie TVE-Q

Regelkomponente für Serie TVE

Regelkomponente mit dynamischem Transmitter und Modbus-RTU-Schnittstelle

Kompakte Baueinheit für VVS-Regelgerät TVE und TVE-Q

- Regler, dynamischer Wirkdrucktransmitter und Stellantrieb in einem Gehäuse
- Einsatz in raumlufttechnischen Anlagen, nur bei sauberer Luft
- Einfacher Klemmenanschluss ohne Einsatz zusätzlicher Abzweigdosen
- \blacksquare Volumenströme $q_{\mbox{\tiny vmin}}$ und $q_{\mbox{\tiny vmax}}$ werkseitig parametriert und im Regler als veränderliche Parameter gespeichert
- Hohe Datentransparenz durch standardisierte digitale Buskommunikation Modbus RTU, RS485
- Sollwertvorgaben, Zwangssteuerungen je nach Konfiguration über Busschnittstelle oder Analogbeschaltung
- Integriertes Display für Volumenstromanzeige, Betriebszustandsanzeige und Einstellung von Betriebsparametern
- Servicezugang für Handeinstellgeräte und PC-Konfigurationssoftware

Produktdatenblatt

1/	B 4	\sim
х	IV/I	u

Allgemeine Informationen	2	Inbetriebnahme	10
Funktion	3	Displayfunktion	11
Ausschreibungstext	4	Modbus-Schnittstelle	14
Bestellschlüssel	5	Analogschnittstelle	18
Varianten	6	Anschlussbelegung und Verdrahtungsbeispiele	20
Technische Daten	7	Legende	26
Schnittstellenauswahl	9		

Allgemeine Informationen

Anwendung

- Regelungstechnische Kompletteinheit für VVS-Regelgeräte Serie TVE und TVE-Q
- Dynamischer Wirkdrucktransmitter, Reglerelektronik und Stellantrieb in einem Gehäuse vereinigt
- Für saubere Luft in raumlufttechnischen Anlagen
 - Die übliche Filterung ermöglicht den Einsatz in der Zuluft ohne zusätzliche Staubschutzmaßnahmen
 - Anwendungsbeispiele: Büro- und Unterrichtsräume
- Bei Staubanfall in den Räumen entsprechende Abluftfilter vorschalten, da zur Volumenstrommessung ein Teilvolumenstrom durch den Transmitter geleitet wird
- Bei starker Verschmutzung der Luft mit Staub, Flusen, klebrigen, feuchten Bestandteilen ist eine Anbaugruppe mit statischem Wirkdrucktransmitter zu verwenden, z. B. XS0
 - Anwendungsbeispiele: Abluft von Umkleide- und Duschbereichen, Krankenhaus-Bettenzimmer
- Unterschiedliche Regelaufgaben durch entsprechende Sollwertvorgabe
- Raumtemperaturregler, Management- und Bedieneinrichtung (MBE), Luftqualitätsregler und andere steuern die variable Volumenstromregelung durch Vorgabe von Sollwerten über Kommunikationsschnittstelle oder Analogsignal
- Zwangssteuerungen für die Aktivierung von q_{vmin}, q_{vmax}, Absperrung, Offenstellung über Modbus-Register oder Schalter bzw. Relais möglich
- Volumenstromistwert steht als Netzwerkdatenpunkt oder lineares Spannungssignal zur Verfügung
- Klappenstellung z. B. zur Ventilatoroptimierung steht als Netzwerkdatenpunkt zur Verfügung

Regelkonzept

- Volumenstromregler arbeitet kanaldruckunabhängig
- Druckschwankungen bewirken keine bleibenden Volumenstromabweichungen
- Eine Totzone (Hysterese), innerhalb der die Stellklappe nicht bewegt wird, sorgt für stabile Regelung
- Volumenstrombereich werkseitig im Regler parametriert
 - q_{vmin}: minimaler Volumenstrom, q_{vmax}: maximaler Volumenstrom
- Betriebsparameter werden per Bestellschlüssel festgelegt und werkseitig parametriert

Betriebsarten

Modbus (M):

- Sollwertvorgabe über Modbus-Register Analog – variabler Betrieb (V):
- Sollwertvorgabe über Analogschnittstelle, Signalspannungsbereich entspricht q_{vmin} bis q_{vmax}
 Analog – Festwertbetrieb (F):

Kein Sollwertsignal erforderlich, Sollwert entspricht q_{vmin}

Schnittstelle

Kommunikationsschnittstellen

 Modbus RTU, RS485, Datenpunkte siehe Modbus-Registerliste

Analogschnittstelle mit einstellbarem Signalspannungsbereich

- Analogsignal für Volumenstromsollwert
- Analogsignal f
 ür Volumenstromistwert (Werkseinstellung)
- Alternativ: Analogsignal für Klappenstellung (bauseitige Umstellung erforderlich)

Hinweis:

 Schnittstellentyp entsprechend Bestellschlüsseldetail Betriebsart werkseitig parametriert, bauseitige Umstellung möglich

Signalspannungsbereiche

Bei Nutzung der Analogschnittstelle:

- 0 10 V DC
- 2 10 V DC

Bauteile und Eigenschaften

- Transmitter nach dynamischem Messprinzip
- Überlastsicherer Antrieb
- Anschlussklemmen mit Abdeckung
- Display und Bedienelemente für einfache Menüführung
- Menüführung zur Anpassung von Betriebsparametern
- Menüführung zur Anpassung der Kommunikationsschnittstelle
- Serviceschnittstelle

Ausführung

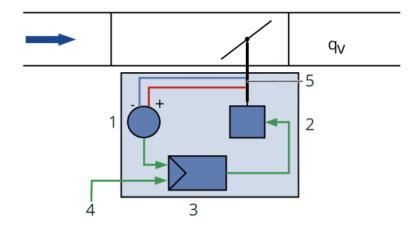
- TR0VM-024T-10I-DD15-MB
- Nur für Serie TVE und TVE-Q einsetzbar

Inbetriebnahme

- Aufgrund der werkseitig eingestellten Volumenströme ist stets darauf zu achten, dass der Einbau der Regelgeräte nur an den vorgesehenen Stellen erfolgt
- Analogschnittstelle: nach Einbau und Verdrahtung betriebsbereit
- Modbus-Schnittstelle: nach Einbau und Verdrahtung zusätzliche Inbetriebnahmeschritte erforderlich
- Betriebsparameter bauseitig anpassbar (per Busschnittstelle, Displaybedienung, Einstellgerät oder PC-Software)

Ergänzende Produkte

- Einstellgerät Typ GUIV3-M (Bestellschlüssel AT-VAV-G3)
- PC-Software



Funktion

Charakteristisch für Volumenstromregelgeräte ist ein geschlossener Regelkreis zur Regelung des Volumenstroms. Das heißt Messen – Vergleichen – Stellen. Die Messung des Volumenstroms erfolgt durch Messung eines Differenzdrucks (Wirkdrucks). Dies geschieht über einen Differenzdrucksensor. Ein integrierter Differenzdrucktransmitter setzt dabei Wirkdruck in ein Spannungssignal um. Der Volumenstromistwert steht als Spannungssignal zur Verfügung. Durch die werkseitige Justage entsprechen 10 V DC immer dem Nennvolumenstrom ($q_{\text{\tiny Nenn}}$).

Der Volumenstromsollwert wird von einem übergeordneten Regler (z. B. Raumtemperaturregler, Luftqualitätsregler, MBE) vorgegeben. Die variable Volumenstromregelung erfolgt zwischen q_{vmin} und q_{vmax}. Die Übersteuerung der Raumtemperaturregelung durch Zwangsschaltungen, beispielsweise Absperrung, ist möglich. Der Regler vergleicht den Volumenstromsollwert mit dem aktuellen Istwert und steuert der Regelabweichung entsprechend den internen Stellantrieb.

- 1 Differenzdrucktransmitter
- 2 Stellantrieb
- 3 Volumenstromregler
- 4 Sollwert über Modbus oder Analogsignal
- 5. Achse mit Wirkdruckkanal

Ausschreibungstext

Dieser Ausschreibungstext beschreibt die generellen Eigenschaften des Produkts.

Kategorie

Compactregler f
ür Volumenstrom

Anwendung

- Regelung eines konstanten oder variablen Volumenstromsollwerts.
- Elektronischer Regler zur Aufschaltung einer Führungsgröße und Abgriff eines Istwerts zur Einbindung in eine Modbusbasierte MBE
- Istwert auf Nennvolumenstrom bezogen, dadurch vereinfachte Inbetriebnahme und nachträgliche Verstellung

Einsatzbereich

 Dynamischer Transmitter für saubere Luft in raumlufttechnischen Anlagen

Stellantrieb

Integriert; langsamlaufend (Laufzeit 100 s für 90°)

Einbaulage

Beliebig

Anschluss

- Klemmen mit Abdeckung durch Gummikappe; dadurch keine zusätzliche Klemmdose erforderlich
- Doppelklemme für Versorgungsspannung zur einfachen Weiterverdrahtung für bis zu 3 Regler

Versorgungsspannung

24 V AC/DC

Schnittstelle/Ansteuerung

- Modbus RTU (RS485) oder alternativ Analogsignal 0 10 V DC bzw. 2 – 10 V DC je nach Bestelloption werkseitig parametriert
- Schnittstellentyp werkseitig anhand Bestellschlüssel parametriert

Schnittstelleninformation

- Modbus: unter anderem Volumenstromsollwert und Istwertsignal, Klappenstellung, Zwangssteuerung
- Alternativ: Volumenstromsollwert und Istwertsignal als Analogsignal

Sonderfunktionen

- Von außen gut sichtbare Kontrollleuchte zur Signalisierung der Funktionen: ausgeregelt, nicht ausgeregelt und Spannungsausfall
- Display zur Istwertanzeige, Parametrierung und für Testfunktionen
- Aktivierung Zwangssteuerungsfunktionen q_{vmin}, q_{vmax}, Geschlossen, Offen über Busschnittstelle
- Externer Schaltkontakte/Beschaltung (bei Schnittstelle Analog)

Parametrierung

- Für VVS-Regelgerät spezifische Parameter werkseitig parametriert
- Betriebswerte: q_{vmin}, q_{vmax}; Schnittstellentyp: Modbus werkseitig parametriert
- Nachträgliche Anpassung über Display und Bedienelement direkt am Gerät oder mit optionalen Tools:
 - Einstellgerät, PC-Software (jeweils kabelgebunden)

Auslieferungszustand

- Elektronische Regelkomponente werkseitig auf Grundgerät montiert
- Werkseitige Parametrierung
- Funktionsprüfung unter Luft; mit Aufkleber bescheinigt

Bestellschlüssel

1 Serie

TVE VVS-Regelgerät

2 Dämmschale

Keine Eintragung: ohne Dämmschale

D mit Dämmschale

3 Material

Keine Eintragung: verzinktes Stahlblech

P1 Oberfläche pulverbeschichtet RAL 7001 (silbergrau)

A2 Edelstahlausführung

5 Nenngröße [mm]

100, 125, 160, 200, 250, 315, 400

6 Zubehör

Keine Eintragung: ohne Zubehör

D2 Doppellippendichtung beidseitig

G2 Gegenflansch beidseitig

7 Anbauteile (Regelkomponente)

XM0 Compactregler dynamischer Transmitter, Modbus RTU, Display

8 Betriebsart

F Festwertbetrieb, ein Sollwert (ohne externe Beschaltung)
 V variabler Betrieb (Sollwertvorgabe über Analogsignal)
 M Modbus-RTU-Schnittstelle, variabler Betrieb (Sollwertvorgabe über Modbus-Register)

9 Signalspannungsbereich

Nur bei Betriebsart F und V

0 0 – 10 V DC **2** 2 – 10 V DC

10 Betriebswerte zur werkseitigen Einstellung

Volumenstrom [m³/h oder l/s] q_{vkonst} (nur bei Betriebsart F)

 $q_{\mbox{\tiny vmin}} - q_{\mbox{\tiny vmax}}$ (nur bei Betriebsart V, M)

Bestellbeispiel: TVE/100/D2/XM0/M/20-350 m³/h

Dämmschale	ohne
Material	verzinktes Stahlblech
Nenngröße	100 mm
Zubehör	Doppellippendichtung beidseitig
Anbauteil	Compactregler Modbus, dynamischer Transmitter, Display
Betriebsart	Modbus RTU
Volumenstrom	20 – 350 m³/h

Varianten

Compactregler XM0 für TVE und TVE-Q

Compactregler XM0 für TVE und TVE-Q (mit aufgesetzter Klemmenabdeckung)

- 1 Compactregler
- 2 Klappenstellungsanzeige und Entriegelungstaste
- 3 Display
- 4 Drehauswahlschalter Auswahl Optionen/Einstellwerte
- 5 LED-Taste Auswahl Menüeintrag
- 6 Anschlussklemme

1 Klemmenabdeckung (im Lieferumfang enthalten)

Technische Daten

Compactregler für VVS-Regelgeräte

Artikelnummer	Typ Anbaukomponente	VVS-Regelgeräte
A00000082303	TR0VM-024T-10I-DD15-MB	TVE, TVE-Q

Compactregler XM0 für TVE und TVE-Q

Produktdatenblatt

TR0VM-024T-10I-DD15-BN

TRUVM-0241-101-DD15-BN			
Messprinzip/Einbaulage	dynamisches Messprinzip, lageunabhängig		
Versorgungsspannung (Wechselspannung)	24 V AC, ± 20 %, 50/60 Hz		
Versorgungsspannung (Gleichspannung) 24 V DC ± 20 %			
	TVE NW 100 – 160: maximal 4 VA		
Anschlussleistung (Wechselspannung)	TVE NW 200 – 400: maximal 6 VA		
Anschlussielstung (Wechselspannung)	TVE-Q bis Höhe 200: maximal 4 VA		
	TVE-Q ab Höhe 300: maximal 6 VA		
	TVE NW 100 – 160: maximal 2,5 W		
Anschlussleistung (Gleichspannung)	TVE NW 200 – 400: maximal 3 W		
Ansoniussicistung (Oleionspannung)	TVE-Q bis Höhe 200: maximal 2,5 W		
	TVE-Q ab Höhe 300: maximal 3 W		
Leistungsbedarf (Betrieb/Ruhezustand)	1 W		
Eingang Sollwertsignal (analog optional)	0 – 10 V DC, Eingangswiderstand > 100 kΩ		
Lingarig Soliwertsignal (analog optional)	oder 2 – 10 V DC Ra > 50 kΩ		
Ausgang Istwertsignal	0 – 10 V DC oder 2 – 10 V DC; maximal 5 mA		
Schutzklasse	III (Schutzkleinspannung)		
Schutzart	IP 42 (bei aufgesetzter Klemmenabdeckung)		
EG-Konformität	EMV nach 2014/30/EU		
Busanschluss	RS485, Modbus RTU		
Anzahl Knoten (Busteilnehmer)	128		
	Baudrate einstellbar: 1200, 2400, 4800, 9600, 19200, 38400,		
	76800, 115200 Baud		
	Startbit: 1		
Einstellbare Kommunikationsparameter für Modbus	Datenbits: 8		
	Stoppbits einstellbar: 1 oder 2		
	Parity: einstellbar: None, Even, Odd		
Sollwert-/Istwertschnittstelle	Modbus-Betrieb: via Modbus-Registerliste		
Busabschluss (Terminierung)	extern erforderlich (120 Ω)		

8 / 26

Schnittstellenauswahl

Schnittstellenkonfiguration der Regelkomponente

Je nach Einstellung stehen die Kommunikationsschnittstellen Modbus RTU oder die Analogschnittstelle für die Sollwertvorgabe von Volumenströmen zur Verfügung.

Die Parametrierung kann ab Werk über den Bestellschlüssel gewählt werden.

bauseitig ist eine Anpassung sowohl über das integrierte Displaymenü, die Modbus-Schnittstelle als auch über Einstellgerät oder PC-Software möglich.

	Sollwertvorgabe über:	Istwertausgabe über:	Bestellschlüsseloption	Konfiguration via Display (MODE, COM)
Analogbetrieb (0 – 10 V)		Analogausgang U (0 – 10 V DC) und Busschnittstelle	V oder F	CA0
Analogbetrieb (2 – 10 V)		Analogausgang U (2 – 10 V DC) und Busschnittstelle	V oder F	CA2
Modbus-Betrieb	Modbus-Register	Modbus-Register und Analogausgang U (2 – 10 V)	bauseitig aktivierbar	Mode = Cb2 COM = b1 - b32

Durch spezielle Konfiguration des Modbus-Registers Interface-Mode können Mischbetriebe aus Modbus-Betrieb und Analogbetrieb konfiguriert werden. Siehe dazu die Beschreibung des Interface-Mode in Modbus-Register 122.

Ergänzende Nutzung der Busschnittstelle im Analogbetrieb (Hybridbetrieb)

Im Analogbetrieb werden vom Regler nur die Sollwertvorgaben am Analogeingang bewertet. Eine Sollwertvorgabe über die Busschnittstelle via Modbus-Register 0 ist dann nicht möglich. Etwaige Schreibversuche werden mit einer Fehlerantwort quittiert. Unabhängig von der gewählten Schnittstellenkonfiguration können jedoch auch bei Analogbetrieb (CA0, CA2) andere Busdatenpunkte genutzt werden. So lassen sich von einer übergeordneten MBE bei lokaler Ansteuerung mit einem Analogsignal über die Modbus-Schnittstelle z. B. die Betriebswerte Volumenstromistwert (Register 6,7) und Klappenpostion (Register 4) auslesen oder auch zentrale Zwangssteuerungen (Register 1) vorgeben. Voraussetzung dafür ist, dass die Kommunikationseinstellungen der Modbus-Schnittstelle (Adresse, Baudrate usw.) passend für das bauseitige Netz z. B. über Displayeinstellung COM b1-b32 konfiguriert sind.

Inbetriebnahme

Inbetriebnahme

Nach Einbau, Verdrahtung und Anschluss der Versorgungsspannung

Bei Nutzung der Analogschnittstelle:

Volumenstromregelgerät sofort betriebsbereit

Bei Nutzung der Buskommunikation sind zusätzliche Inbetriebnahmeschritte erforderlich:

- Z. B. Vergabe der Teilnehmeradresse und gegebenenfalls Anpassung der Kommunikationseinstellungen über das integrierte Displaymenü
- Sollwertvorgabe über Modbus-Register

Hinweis:

Klemmenabdeckung der Regelkomponente nur zum Verdrahten entfernen

Volumenstromregelbereiche beachten

- TVE: 4 100 % von q_{vnenn}
- TVE-Q: 10 100 % von q_{vnenn}
- Insbesondere Werte für den minimalen Volumenstrom des Regelgerätes nicht unterschreiten

Einstellmöglichkeiten/Servicetools

Funktion	Displaymenü	Modbus-Register	Einstellgerät	PC-Tool
Anpassung Arbeitsbereich q _{vmin} , q _{vmax}	R, W	R, W	R, W	R, W
Einstellung Kanal für Sollwertvorgabe (Bus oder Analogsignal)	R, W	R, W	R, W	R, W
Einstellung Kommunikationsparameter z. B. Baudrate	R, W	R, W	R, W	R, W
Einstellung Teilnehmeradresse Modbus	R, W	R, W	R, W	R, W
Trendanzeige	_	_	_	R, W
Zwangssteuerung ausführen	R, W	R, W	R, W	R, W
spannungslose Parametrierung	_	_	R, W	R, W

R, W = Funktion ist les- und schreibbar.

Hinweis: Der Nennvolumenstrom q_{vNenn} lässt sich bauseitig nicht anpassen.

^{- =} Funktion ist für das Servicetool nicht vorhanden.

Displayfunktion

Funktionsumfang Display

Anzeigefunktionen

- Volumenstromistwert (Einheit wahlweise m³/h, l/s, cfm)
- Anzeige erfolgt auf 3-Zeichen-Display mit Kennzeichnung der Stellenwertigkeit und Volumenstromeinheit
- Status- und Fehleranzeige für verschiedene Betriebszustände unter anderem: Anzeige aktivierter Zwangssteuerung, Anzeige von Nennvolumenstrom, Firmwareversion und Diagnosefunktion

Parametrierungsfunktionen

- Einstellmöglichkeit für die Einheit der Volumenstromanzeige m³/h, l/s, cfm
- Einstellmöglichkeit für den Arbeitsbereich q_{vmin}, q_{vmax}
- Auswahl der Signalquelle für Sollwertvorgabe (Interface Mode)
 - Sollwertvorgabe über Modbus
 - Sollwertvorgabe über Analogsignal (0 10 V DC oder 2 10 V DC je nach Kennlinieneinstellung)
- Einstellmöglichkeit für Kommunikationsparameter bei Modbus-Betrieb: Adresse, Baudrate, Stoppbits, Parity

Diagnosefunktionen

- Aktivierung eines Testlaufs
- Aktivierung von Zwangssteuerungen Offen, Zu, q_{vmin}, q_{vmax}, Motor-Stopp (Priorisierung beachten)
- Anzeige des Spannungswerts am Analogeingang und Analogausgang

Bedienung und Erläuterung des Displays

Durch das Drücken des LED-Tasters (< 3 s) werden nacheinander die Menüpunkte 1 – 7 ausgewählt. Durch längeres Drücken des LED-Tasters (> 3 s) lässt sich der ausgewählte Menüpunkt editieren. Das Editieren erfolgt durch den Drehauswahlschalter. Der ausgewählte Wert wird durch erneutes Drücken des LED-Tasters (< 3 s) bestätigt. Erfolgt keine Eingabe für ≥ 60 s wird zum Menüpunkt 1 zurückgewechselt.

Ausschnitt der Bedienelemente

- 1: Display
- 2: Drehauswahlschalter
- 3: LED-Taste

Tabelle 1: Erläuterung der Menüpunkte

labelle 1: Erlauteru	ng der Menüpunkte	
1 Flow	Anzeige von Istwerten oder Betriebszuständen. Einstellung der Volumenstromeinheit m³/h, l/s, cfm	
2 Vmin	Einstellung von q _{vmin}	
3 Vmax	Einstellung von q _{vmax}	
4 DIAG	Anzeige von Stellsignal und Rückführsignal im Wechsel in [V], Aktivierung von Zwangssteuerungen zu Test und Diagnosezwecken: tst = Testfahrt oP = Klappe offen cL = Klappe zu Lo = q _{vmin} Hi = q _{vmax} St = Motor-Stopp oFF = Zwangssteuerung aus	
5 MODE	Auswahl Signalquelle (interface Mode) CA0 = Sollwertvorgabe und Istwertrückgabe über Analogschnittstelle (0 – 10 V) CA2 = Sollwertvorgabe und Istwertrückgabe über Analogschnittstelle (2 – 10 V) Cb2 = Sollwert schreiben und Istwert lesen über Busschnittstelle; zusätzlich Istwertsignal analog 2 – 10 V DC	
6 COM	Teilnehmeradresse Modbus: Adresse 1 – 247 Auswahl der Protokoll- und Kommunikationseinstellungen: Kommunikationsparametersatz b1 bis b32: Modbus-RTU-Protokoll mit 32 verschiedenen Parametersätzen für Baudrate, Parity, Stoppbits Kommunikationsparametersätze (Detailbeschreibung): Beschreibung zu b1 – b32 siehe Register 568	
7 Info	Pos = Ventilator Anforderungssignal entspricht Klappenposition in Prozent.¹ qno = Nennvolumenstrom Fir = Anzeige der Firmware Version der Regelkomponente ¹Regelgeräte TVE und TVE-Q verwenden gegenüber Standardreglern wie TVR eingeschränkte Klappenöffnungswinkel, um das Messen des Volumenstroms mit der Klappe zu realisieren. Eine Klappenposition 100 % entsprechen somit nicht einem Klappenöffnungswinkel von 90°.	

Erläuterung Status und Fehlermeldungen über LED-Blinksignal und Display				
Blinksignal LED-Taster	Status	Display		
1 I I Sec 0 1 2	keine Versorgungsspannung angeschlossen			
	Servicetool eingesteckt. Bauseitiger Netzwerkanschluss deaktiviert. Zwangssteuerungen vom Servicetool haben Vorrang	02366878		
	Unterspannung erkannt. Versorgungsspannung außerhalb des Toleranzbereichs. Regelfunktion nicht gewährleistet	02366878		
***	TROX Servicetechniker informieren. Beim Einschalten/Reset wurde eine unvollständige Parametrierung erkannt *			
sec ! ! !	Überlast des Antriebs erkannt (Block) *			
1 1 1 sec 0 1 2	Synchronisationsfahrt nach Power Up *			
1 1 1 sec 0 1 2	Testmodus aktiviert *			
1	Überdrucksensor (Overpressure) *			
1 1 1 sec 0 1 2	Sollwert oder Zwangssteuerungsposition noch nicht erreicht (Displaywechsel zwischen z. B. Hi = High und Istwert) *			
1	Zwangssteuerungsposition erreicht (Displaywechsel zwischen z. B. Hi = High und Istwert) *			
1 1 1 1 sec 0 1 2	Ausgeregelt: Wird signalisiert, solange der Antrieb nicht dreht, um den Sollwert nachzuregeln *			

Hinweise:

Das Blinksignal beschreibt immer einen 2-Sekunden-Intervall. 1 = LED leuchtet, 0 = LED leuchtet nicht.

Für Servicetool eingesteckt (Display: Pc) oder Unterspannung erkannt (Display: Lou) erscheint auf dem LED-Taster kein spezielles Blinksignal. Stattdessen wird einer der Betriebszustände angezeigt, die mit einem Stern (*) gekennzeichnet sind.

Modbus-Schnittstelle

Modbus-Betrieb

Für den reibungslosen Datenaustausch im bauseitigen Modbus-RTU-Netzwerk ist die Einstellung der Kommunikationsparameter und der Teilnehmeradresse für die Modbus-Schnittstelle erforderlich.

Die Schnittstelle bietet standardisierte Modbus-Registerzugriffe auf die verfügbaren Datenpunkte durch die Funktionen ReadHoldingRegister (3) und WriteSingleRegister (6).

Sollwertvorgabe

- Für Sollwertvorgabe über Modbus ist die Signalquelle in Register 122 auf den Wert 1 oder 2 einzustellen
- Im Modbus-Betrieb erfolgt die Sollwertvorgabe nur durch Vorgabe des Volumenstromsollwerts [%] im Modbus-Register 0
- Der übergebene Prozentwert bezieht sich auf den durch q_{vmin} q_{vmax} festgelegten Volumenstrombereich
- Volumenstrombereich q_{vmin} q_{vmax} werkseitig entsprechend Bestellschlüsselangaben parametriert
- Nachträgliche Anpassung von q_{vmin} bzw. q_{vmax} im Einstellmenü am Display, mit Einstellgerät oder über Modbus-Schnittstelle möglich

Istwert als Feedback für Überwachung oder Folgeregelung

- Im Modbus-Register 7 ist der aktuelle Istvolumenstrom in der eingestellten Volumenstromeinheit (Register 201) abrufbar
- Neben dem Volumenstromistwert k\u00f6nnen weitere Informationen \u00fcber andere Modbus-Register ausgelesen werden;
 \u00dcbersicht siehe Registerliste
- Zu Diagnosezwecken kann im Modbus-Betrieb der Volumenstromistwert an der Klemme U als Analogsignal abgegriffen werden
- Der Volumenstrombereich 0 q_{vNenn} entspricht dabei immer dem Signalspannungsbereich von 2 10 V DC

Zwangssteuerung

Für besondere Betriebssituationen kann der Volumenstromregler in einen speziellen Betriebszustand (Zwangssteuerung) gebracht werden. Möglich sind: Regelung q_{vmin} , Regelung q_{vmin}

Zwangssteuerung über den Modbus

Vorgaben erfolgen über das Modbus-Register 1.

Zwangssteuerung über lokale Analogbeschaltung

Analoge Zwangsschaltungen können über Modbus-Register erkannt und bewertet werden, siehe auch Betriebsanleitung.

Zwangssteuerung durch Busausfallüberwachung

Bei Ausfall der Modbus-Kommunikation für einen festgelegten Zeitraum kann ein vordefinierter Betriebszustand $q_{\text{\tiny vmin}}$, $q_{\text{\tiny vmax}}$, OFFEN oder ZU aktiviert werden.

- Die Festlegung der bei Busausfall zu aktivierenden Zwangssteuerung erfolgt über das Register 108
- Die Festlegung, nach welcher Busausfallzeit die Zwangssteuerung aktiviert wird, erfolgt über das Register 109
- Jegliche Modbus-Kommunikation setzt den Timeout der Busausfallüberwachung zurück
- Der Timeout der Busausfallüberwachung wird durch eine Sollwertänderung (Register 0) oder ein Zwangssteuerungskommando (Register 1) zurückgesetzt

Zwangssteuerungen für Diagnosezwecke

Aktivierung über das Diagnosemenü am Display des Reglers oder über die Servicetools (Einstellgerät, PC-Software).

Priorisierung verschiedener Vorgabemöglichkeiten

Vorgaben für Zwangssteuerungen über Servicetools sind gegenüber Modbus-Vorgaben priorisiert.

- Höchste Priorität: Vorgaben über den Servicestecker (Einstellgerät, PC-Software) zu Testzwecken
- Niedrigste Priorität: Vorgabe über Modbus 1 oder das Diagnosemenü am Regler

Hinweis:

Ein zyklisches Schreiben auf Register mit Speicherung im EEPROM ist nicht zugelassen. Dies betrifft insbesondere die grundlegenden Einstellparameter für den Arbeitsbereich q_{vmin} (Register 105 bzw. 120), q_{vmax} (Register 106 bzw. 121), die Festlegung der Signalquelle für Sollwertvorgabe (Interface Mode, Register 122) und alle anderen Register ab Nummer 100. Siehe auch Hinweise zur Beschreibbarkeit am Ende der Modbus-Registerbeschreibung.

Kommunikationsschnittstelle Modbus RTU (Betriebsart M)

	chnittstelle Modbus RTU (Betriebsart M)	7	On all language
Register	Nature participated livert [0/1]	Zugriffsrecht	Speicherung
	Volumenstromsollwert [%]		
0	Bezug:q _{vmin} - q _{vmax}	R, W	RAM
	Auflösung: 0 – 10000		
	Volumenstromsollwert: 0.00 – 100.00%		
1	Aktivierung einer Zwangssteuerung; 0 = keine; 1 = Offen; 2 = Zu; 3 =	R, W	RAM
'	q_{vmin} ; $4 = q_{\text{vmax}}$	17, 77	I VAIVI
0	Kommandoauslösung 0 = keins; 1 = Adaption; 2 = Testlauf; 4 =	D W	DAM
2	Controller Reset	R, W	RAM
	Aktuelle Klappenposition: [%]		
	Auflösung: 0 – 10000		
4	Klappenposition: 0.00 – 100.00 % (0 % = geschlossen 100 % =	R	RAM
	maximal geöffnet)		
	Aktuelle Klappenposition [°]		
	Auflösung: ohne Nachkommastellen		
_	Hinweis:	_	
5		R	RAM
	nicht einem Klappenwinkel von ca. 90° wie bei konventionellen		
	Regelgeräten, da die Klappe prinzipbedingt einen gewissen		
	Anstellwinkel nicht überschreitet. Zur Ventilatoroptimierung ist daher		
	immer die Klappenposition in Prozent in Register 4 zu verwenden		
	Aktueller Istvolumenstrom [%]		
C	Bezug: q _{vnenn}	D	DAM
6	Auflösung: 0 – 10000	R	RAM
	Volumenstromistwert: 0.00 – 100.00 %		
	Aktueller Istvolumenstrom in Volumenstromeinheit [m³/h], [l/s], [cfm]		
7	gemäß Register 201	R	RAM
8	Spannungswert am Analogeingang Y [mV]	R	RAM
0	Volumenstromsollwert	IX	I V-IIVI
20		D W	RAM
20	in Volumenstromeinheit [m³/h], [l/s], [cfm]	R, W	KAW
400	gemäß Register 201	-	E
103	Firmware Version	R	Flash
	Statusinformation		
104	Bit 5 mechanische Überlast	R	RAM
	Bit 8 interne Aktivität z. B. Testlauf, Adaption		
	Bit 10 Busausfallüberwachung ausgelöst		
	Begrenzung Arbeitsbereich:		
	Betriebsparameter q _{vmin} [%]		
105	Bezug: q _{vnenn}	R, W	EEPROM
	Auflösung: 0 – 10000		
	q _{vmin} : 0.00 – 100.00 %		
	Begrenzung Arbeitsbereich:		
	Betriebsparameter q _{vmax} [%]		
106		R, W	EEPROM
100	Bezug: q _{vnenn}	Γ, ۷۷	EEFROW
	Auflösung: 0 – 10000		
	q _{vmax} : 0.00 – 100.00 %		
108	Verhalten bei Busausfall (Bus-Time-out); 0 = nichts; 1 = Zu; 2 = Offen;	R, W	EEPROM
	$3 = q_{vmin}; 5 = q_{vmax}$		
109	Festlegung Bus-Time-out [s]	R, W	EEPROM
	Festlegung Arbeitsbereich:		
120	Betriebsparameter q _{vmin} in Volumenstromeinheit [m³/h], [l/s], [cfm]	R, W	EEPROM
	gemäß Register 201		
	Festlegung Arbeitsbereich: Betriebsparameter q _{vmax} in		
121	Volumenstromeinheit [m³/h], [l/s], [cfm] gemäß Register 201	R, W	EEPROM
	Festlegung Signalquelle für Sollwertvorgabe (Interface		
122		R, W	EEPROM
	Mode); Belegung siehe gesonderte Tabelle		
130	Teilnehmeradresse (Buskommunikation); werkseitige Parametrierung:	R, W	EEPROM
	Adresse 1		
201	Volumenstromeinheit 0 = I/s; 1 = m³/h; 6 = cfm	R, W	EEPROM

Produktdatenblatt

Register	Bedeutung	Zugriffsrecht	Speicherung
231	Einstellung Mode: Bit 0 definiert die Kennlinienauswahl der Analogschnittstelle: Bit 0 = 0 Kennlinie: 0 – 10 V Bit 0 = 1 Kennlinie: 2 – 10 V Bit 4 definiert das Istwertsignal als Volumenstromistwert oder Klappenstellung: Bit 4 = 0 Volumenstromistwert	R, W	EEPROM
233	Nennvolumenstrom [m³/h] q _{vnenn} des Regelgerätes	R	EEPROM
568	Parametersatz für die Buskommunikation (Protokoll, Baudrate etc.); Beschreibung siehe gesonderte Tabelle	R, W	EEPROM
569	Modbus-Kommunikationseinstellungen: Modbus Response Time = 10 ms + delay; mit delay = 3 ms × Registerwert 0 – 255	R, W	EEPROM

R = Register lesbar

R, W = Register les- und schreibbar

RAM = Registerwert flüchtig

EEPROM = Registerwert nicht flüchtig, sondern dauerhaft gespeichert (maximal 1 Mio. Schreibvorgänge)

FLASH = unveränderlicher Programmspeicher

Hinweis:

Alle Register mit Speicherung im EEPROM sind **nicht** für zyklische Schreibzugriffe z. B. seitens der MBE ausgelegt. Zyklische Schreibvorgänge sind nur auf Registern mit Speicherung im RAM zugelassen.

Detailinformationen zu Register 122 - Festlegung Signalquelle für Sollwertvorgabe (Interface Mode)

Interface mode			
Registerwert	Signal-Input	Feedback-Signal	
0	Sollwertvorgabe über Analogeingang Y (0) 2 – 10 V DC ¹	(0)2 – 10 V	
1	Sollwertvorgabe über Modbus-Register 0	(0)2 – 10 V	
2	Sollwertvorgabe über Modbus-Register 0	Modbus-Register 10	
3	Sollwertvorgabe über Analogeingang Y (0) 2 – 10 V DC ¹	Modbus-Register 10	

¹Einstellung Kennlinie 0 – 10 V oder 2 – 10 V separat mit Register 231

Detailinformationen zu Register 568 (Modbus-Kommunikationsparameter/Displayeinstellung im Menü COM)

Registerwert	Displayeinstellwert	Baudrate	Parität	Stop bits
0	b1	1200	keine	2
1	b2	1200	gerade	1
2	b3	1200	ungerade	1
3	b4	2400	keine	2
4	b5	2400	gerade	1
5	b6	2400	ungerade	1
6	b7	4800	keine	2
7	b8	4800	gerade	1
8	b9	4800	ungerade	1
9	b10	9600	keine	2
10	b11	9600	gerade	1
11	b12	9600	ungerade	1
12	b13	19200	keine	2
13	b14	19200	gerade	1
14	b15	19200	ungerade	1
15 ¹	b16	38400	keine	2
16	b17	38400	gerade	1
17	b18	38400	ungerade	1
18	b19	1200	keine	1
19	b20	2400	keine	1
20	b21	4800	keine	1
21	b22	9600	keine	1
22	b23	19200	keine	1
23	b24	38400	keine	1
24	b25	76800	keine	1
25	b26	115200	keine	1
26	b27	76800	keine	2
27	b28	76800	gerade	1
28	b29	76800	ungerade	1
29	b30	115200	keine	2
30	b31	115200	gerade	1
31	b32	115200	ungerade	1

¹Werkseinstellung: Modbus-Kommunikationsparameter

Analogschnittstelle

Analogbetrieb 0 – 10V DC bzw. 2 – 10V DC (Bestellschlüssel, Betriebsart V, F)

Für den Analogbetrieb ist die Signalquelle (Interface Mode) bei Betriebsart V, F werkseitig auf Analog parametriert.

Die Analogschnittstelle kann für den Signalspannungsbereich 0 – 10 V DC oder 2 – 10 V DC eingestellt werden.

Die Zuordnung von Volumenstromsollwert bzw. -istwert zu Spannungssignalen ist in den Kennliniendarstellungen abgebildet.

- Eingestellter Signalspannungsbereich gilt immer gleichermaßen für Sollwert- und Istwertsignale
- Signalspannungsbereich werkseitig entsprechend Bestellschlüsselangaben parametriert
- Signalspannungsbereich bauseitig im Einstellmenü am Display oder mit Einstellgerät anpassbar

Sollwertvorgabe

- In der Betriebsart V (variabler Betrieb) erfolgt die Sollwertvorgabe nur mit einem Analogsignal an der Klemme Y
 - Sollwertvorgaben über Modbus-Register werden abgewiesen
- Gewählter Signalspannungsbereich 0 10 V bzw. 2 10 V DC wird eingestelltem Volumenstrombereich q_{vmin} q_{vmax} zugeordnet
- Volumenstrombereich q_{vmin} q_{vmax} werkseitig entsprechend Bestellschlüsselangaben parametriert
- Nachträgliche Anpassung von q_{vmin} bzw. q_{vmax} im Einstellmenü am Display oder mit Einstellgerät möglich
- In der Betriebsart F (Festwertbetrieb) ist kein Analogsignal an der Klemme Y erforderlich
- Es wird der durch q_{vmin} eingestellte Volumenstromfestwert geregelt
- Volumenstrom q_{vmin} werkseitig entsprechend Bestellschlüsselangabe parametriert
- Nachträgliche Anpassung von q_{vmin} im Einstellmenü am Display oder mit Einstellgerät möglich

Istwert als Feedback für Überwachung oder Folgeregelung

- An der Klemme U kann der vom Regler gemessene Istvolumenstrom als Spannungssignal abgegriffen werden
- Gewählter Signalspannungsbereich 0 10 V DC bzw. 2 10 V DC wird auf den Volumenstrombereich 0 q_{vNenn} abgebildet
- Im Analogbetrieb (Betriebsart V, F) besteht parallel die Möglichkeit, Betriebsdaten über die eingestellte Busschnittstelle abzufragen

Zwangssteuerung

Für besondere Betriebssituationen kann der Volumenstromregler in einen speziellen Betriebszustand (Zwangssteuerung) gebracht werden. Möglich sind: Regelung q_{vmin}, Regelung

Zwangssteuerungen über Signaleingang Y

Durch passende Beschaltung am Signaleingang Y können die Zwangssteuerungen entsprechend den Anschlussbildern durch Beschaltung mit externen Schaltkontakten/Relais aktiviert werden (siehe Verdrahtungsbeispiele). OFFEN und ZU stehen nur bei einer Versorgung des Reglers mit Wechselspannung (AC) zur Verfügung.

Zwangssteuerung ZU über Führungssignal am Signaleingang Y

- Bei Signalspannungsbereich 0 10 V DC und q_{vmin} = 0: ZU wird aktiviert, wenn Führungssignal Y < 0,3 V DC ist
- Bei Signalspannungsbereich 0 10 V DC und $q_{\mbox{\tiny vmin}}$ > 0: keine Absperrung möglich
- Bei Signalspannungsbereich 2 10 V DC und q_{vmin} = 0: ZU wird aktiviert, wenn Führungssignal Y < 2,3 V DC ist
- Bei Signalspannungsbereich 2 10 V DC und q_{vmin} > 0: ZU wird aktiviert, wenn Führungssignal Y < 0,8 V DC ist Zwischen 0,9 V und 2 V wird q_{vmin} geregelt.

Zwangssteuerungen im Analogbetrieb über Busschnittstelle

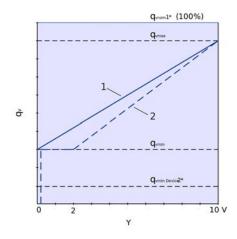
Ist im Analogbetrieb die Busschnittstelle zusätzlich angeschlossen, so kann darüber ebenfalls eine Zwangssteuerung vorgegeben werden.

Bei Modbus-Betrieb über Register 1 (Zwangssteuerungskommando)

Zwangssteuerung für Diagnosezwecke

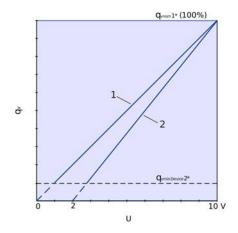
Aktivierung über das Diagnosemenü am Display des Reglers oder die Servicetools (Einstellgerät, PC-Software).

Priorisierung verschiedener Vorgabemöglichkeiten


Verschiedene Zwangssteuerungsmöglichkeiten werden vom Regler wie folgt priorisiert:

- Höchste Priorität: Vorgaben über den Servicestecker (Einstellgerät, PC-Software) zu Testzwecken
- Mittlere Priorität: Vorgaben über Busschnittstelle oder das Diagnosemenü an der Regelkomponente
- Niedrigste Priorität: Vorgaben über Beschaltung am Y-Signaleingang des Reglers

Kennlinie des Sollwertsignals



- 1 Signalspannungsbereich 0 10 V
- 2 Signalspannungsbereich 2 10 V
- $1^* = q_{vnenn}$ Nennvolumenstrom
- $2^* = q_{vmin Gerät}$ minimal regelbarer Volumenstrom

Berechnung Volumenstromsollwert bei 0 - 10 V

$$q_{vset} = \frac{Y}{10 \ V} \times (q_{vmax} - q_{vmin}) + q_{vmin}$$

Kennlinie des Istwertsignals

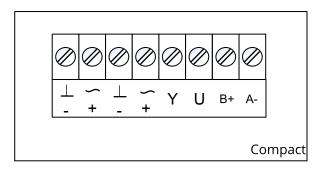
- 1 Signalspannungsbereich 0 10 V
- 2 Signalspannungsbereich 2 10 V
- $1^* = q_{vnenn}$ Nennvolumenstrom
- $2^* = q_{vmin Gerät}$ minimal regelbarer Volumenstrom

Berechnung Volumenstromistwert bei 0 - 10 V

$$q_{vact} = \frac{U}{10 \, V} \times q_{vnom}$$

Berechnung Volumenstromsollwert bei 2 – 10 V

$$q_{vset} = \frac{Y - 2V}{(10V - 2V)} \times (q_{vmax} - q_{vmin}) + q_{vmin}$$


Berechnung Volumenstromistwert bei 2 – 10 V

$$q_{vact} = \frac{U - 2}{10 V - 2 V} \times q_{vnom}$$

Anschlussbelegung und Verdrahtungsbeispiele

Klemmenbelegung bei Bussystem

 $_{\perp}$, – = Masse, Null

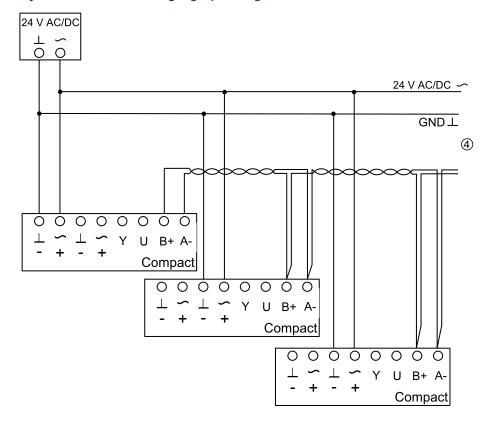
~, + = Versorgungsspannung 24 V AC/DC

Y = Analogeingang

U = Istwertsignal

B+ = RS-485 Bus (Modbus RTU)

A- = RS-485 Bus (Modbus RTU)


Hinweise

- Analogeingang Y wird bei werkseitig bestellter Betriebsart M (reiner Busbetrieb) ignoriert.
 Für bauseitige Alternativkonfiguration siehe Beschreibung zur Schnittstellenkonfiguration
- Istwertsignal im Busbetrieb 2 10 V DC (Signalspannungsbereich werkseitig parametriert und nicht änderbar)
- Versorgungs- und Busanschlüsse sind nicht galvanisch getrennt

Anschlussschema Bussystem - mit einer Versorgungsspannung

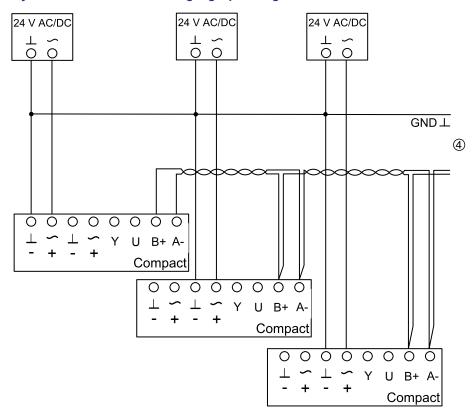
⊥, - = Masse, Null

~, + = Versorgungsspannung 24 V AC/DC

B+ = RS-485-Bus (Modbus RTU)

A- = RS-485-Bus (Modbus RTU)

4 = weitere Netzwerkteilnehmer


Hinweis:

- Elektrischer Anschluss nur über Sicherheitstransformator
- Modbus-Netzwerkaufbau und Verdrahtung nur nach den einschlägigen RS485-Richtlinien
- Versorgungs- und Busanschlüsse sind nicht galvanisch getrennt
- Gleichen Massebezugspunkt für die Versorgungsspannung aller Busteilnehmer beachten
- Busabschlusswiderstände an den Enden der Busleitung verwenden

Anschlussschema Bussystem – mit mehreren Versorgungsspannungen

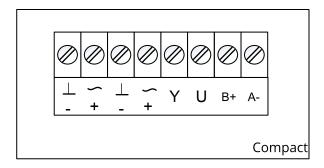
 \perp , – = Masse, Null

~, + = Versorgungsspannung 24 V AC/DC

B+ = RS-485-Bus (Modbus RTU)

A- = RS-485-Bus (Modbus RTU)

4 = weitere Netzwerkteilnehmer


Hinweis:

- Elektrischer Anschluss nur über Sicherheitstransformator
- Modbus-Netzwerkaufbau und Verdrahtung nur nach den einschlägigen RS485-Richtlinien
- Versorgungs- und Busanschlüsse sind nicht galvanisch getrennt
- Gleichen Massebezugspunkt für die Versorgungsspannung aller Busteilnehmer beachten
- Busabschlusswiderstände an den Enden der Busleitung verwenden

Klemmenbelegung bei Analogbetrieb 0 - 10 V DC bzw. 2 - 10 V DC

 \perp , – = Masse, Null

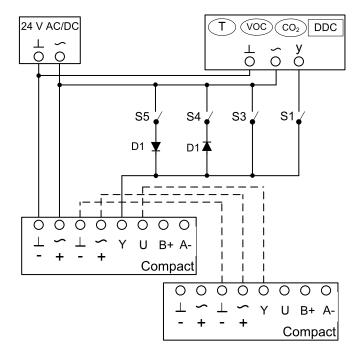
~, + = Versorgungsspannung 24 V AC/DC

Y = Sollwertsignal und lokale Zwangssteuerung

U = Istwertsignal

B+ = RS-485-Bus (Modbus RTU)

A- = RS-485-Bus (Modbus RTU)


Hinweise

- Elektrischer Anschluss nur über Sicherheitstransformator
- Sollwert- und Istwertsignal je nach gewähltem Signalspannungsbereich 0 10 V DC oder 2 10 V DC
- Sollwertvorgabe über Modbus wird bei Betriebsart F oder V (reiner Analogbetrieb) ignoriert.
 Für bauseitige Alternativkonfiguration siehe Beschreibung zur Schnittstellenkonfiguration und Register 122
- Parallele Betriebswertabfrage über Modbus auch bei Analogbetrieb möglich
- Versorgungs- und Busanschlüsse sind nicht galvanisch getrennt
- Gleichen Massebezugspunkt für die Versorgungsspannung aller Busteilnehmer beachten
- Busabschlusswiderstände an den Enden der Busleitung verwenden

Ansteuerung analog und Zwangssteuerung, Spannungssignal 0 – 10 V DC

Hinweise

- T, VOC, CO₂, DDC = Sollwertvorgabe q_v
- D1 = Diode für Zwangsbeschaltung, z. B. 1N4007
- Elektrischer Anschluss nur über Sicherheitstransformator
- Bei Kombination mehrerer Zwangssteuerungen die Schalter gegeneinander verriegeln, um Kurzschlüsse zu vermeiden
- Sollwert- und Istwertsignal 0 10 V DC

Beschaltungsvarianten

Regelbetrieb q_{vmin} - q_{vmax}

- Z. B. für Raumtemperaturreglung
- Nur Schalter (Verbindung) S1 darf geschlossen sein

Zwangssteuerung q_{vmin}

Alle Schalter geöffnet, nur Versorgungsspannung angeschlossen

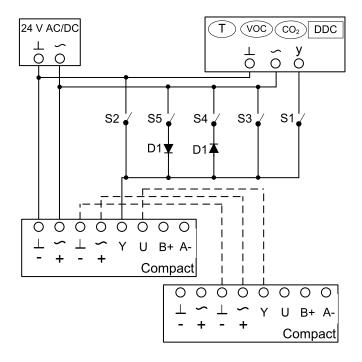
Zwangssteuerung Regelklappe geöffnet AUF

- Nur Schalter (Verbindung) S3 darf geschlossen sein
- · Funktioniert nur bei Versorgung mit Wechselspannung

Zwangssteuerung Regelklappe geschlossen ZU

 Nur Schalter (Verbindung) S2 darf geschlossen sein Oder:

Nur Schalter (Verbindung) S4 darf geschlossen sein; funktioniert nur bei Versorgung mit Wechselspannung


Regelklappe geschlossen per Sollwertsignal ZU

- Nur Schalter (Verbindung) S1 darf geschlossen sein
- Weitere Randbedingungen wie Signalspannungsbereich q_{vmin} Einstellung und Absperrungsspannung siehe Beschreibung Produktdetails Analogbetrieb

Ansteuerung analog und Zwangssteuerung, Spannungssignal 2 – 10 V DC

Hinweise

- T, VOC, CO₂, DDC = Sollwertvorgabe q_v
- D1 = Diode für Zwangsbeschaltung, z. B. 1N4007
- Elektrischer Anschluss nur über Sicherheitstransformator
- Bei Kombination mehrerer Zwangssteuerungen die Schalter gegeneinander verriegeln, um Kurzschlüsse zu vermeiden
- Sollwert- und Istwertsignal 2 10 V DC

Beschaltungsvarianten

Regelbetrieb q_{vmin} - q_{vmax}

- z.B. für Raumtemperaturreglung
- Nur Schalter (Verbindung) S1 darf geschlossen sein

Zwangssteuerung q_{vmin}

Alle Schalter geöffnet, nur Versorgungsspannung angeschlossen

Zwangssteuerung Regelklappe geöffnet AUF

- Nur Schalter (Verbindung) S3 darf geschlossen sein
- · Funktioniert nur bei Versorgung mit Wechselspannung

Zwangssteuerung Regelklappe geschlossen ZU

 Nur Schalter (Verbindung) S2 darf geschlossen sein Oder:

Nur Schalter (Verbindung) S4 darf geschlossen sein; funktioniert nur bei Versorgung mit Wechselspannung

Regelklappe geschlossen per Sollwertsignal ZU

- Nur Schalter (Verbindung) S1 darf geschlossen sein
- Weitere Randbedingungen wie Signalspannungsbereich q_{vmin} Einstellung und Absperrungspannung siehe Beschreibung Produktdetails Analogbetrieb

Legende

q_{vNenn} [m³/h]; [l/s]

Nennvolumenstrom (100 %): Wert ist abhängig von Geräteserie, Nenngröße und Regelkomponente (Anbauteil). Werte im Internet und in der Produktbroschüre publiziert und im Auslegungsprogramm Easy Product Finder hinterlegt. Referenzwert zur Berechnung von Prozentwerten (z. B. q_{vmax}). Obere Grenze des Einstellbereichs und maximal möglicher Volumenstromsollwert des VVS-Regelgerätes.

q_{vmin Gerät} [m³/h]; [l/s]

Technisch minimaler Volumenstrom: Wert ist abhängig von Geräteserie, Nenngröße und Regelkomponente (Anbauteil). Werte im Auslegungsprogramm Easy Product Finder hinterlegt. Untere Grenze des Einstellbereichs und minimaler regelbarer Volumenstromsollwert des VVS-Regelgerätes. Sollwerte unterhalb q_{vmin Gerät} (wenn q_{vmin} gleich 0 eingestellt) führen je nach Regler zu instabiler Regelung oder Absperrung.

q_{vmax} [m³/h]; [l/s]

Bauseitig einstellbare, obere Grenze des Arbeitsbereichs des VVS-Regelgerätes: q_{vmax} kann nur kleiner oder gleich q_{vNenn} eingestellt werden. Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet) wird dem maximalen Wert des Sollwertsignals (10 V) der eingestellte maximale Wert (q_{vmax}) zugeordnet (siehe Kennlinie).

\mathbf{q}_{vmin} [m³/h]; [l/s]

Bauseitig einstellbare, untere Grenze des Arbeitsbereichs des VVS-Regelgerätes: q_{vmin} sollte nur kleiner oder gleich q_{vmax} eingestellt werden. q_{vmin} nicht kleiner als $q_{vmin \; Gerät}$ einstellen, Regelung sonst instabil, oder die Regelklappe schließt. q_{vmin} gleich 0 ist ein gültiger Wert. Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet), wird dem minimalen Wert des Sollwertsignals (0 oder 2 V) der eingestellte minimale Wert (q_{vmin}) zugeordnet (siehe Kennlinie).

q_v [m³/h]; [l/s] Volumenstrom

Volumenstromregler

Bestehend aus einem Grundgerät und einer angebauten Regelkomponente.

Grundgerät

Gerät zur Regelung eines Volumenstroms ohne angebaute Regelkomponente. Wesentliche Bestandteile sind das Gehäuse mit Sensorelement(en) zur Erfassung des Wirkdrucks und die Stellklappe zur Drosselung des Volumenstroms. Das Grundgerät wird auch als VVS-Regelgerät bezeichnet. Wichtige Unterscheidungsmerkmale: Geometrie bzw. Geräteform, Material- und Anschlussvarianten, akustische Eigenschaften (z. B. Dämmschalenoption oder integrierte Schalldämpfer), Volumenstrombereich.

Regelkomponente

An das Grundgerät montierte elektronische Einheit(en) zur Regelung des Volumenstroms oder des Kanaldrucks oder des Raumdrucks durch Anpassung der Stellklappenposition. Die elektronische Einheit besteht im Wesentlichen aus einem Regler mit Wirkdrucktransmitter (integriert oder extern) und einem integrierten Stellantrieb (Easy- und Compactregler). Wichtige Unterscheidungsmerkmale:

- Transmitter: dynamischer Transmitter für saubere Luft bzw. statischer Transmitter für verschmutzte Luft
- Stellantrieb: Standardantrieb langsamlaufend
- Schnittstellentechnik: Analogschnittstelle oder digitale Busschnittstelle zur Aufschaltung und zum Abgriff von Signalen und Informationen

MBE

Management- und Bedieneinrichtung

