Volume flow rate measuring units Type VMRK

Variant with circular spigot

Static differential pressure transducer

Tested to VDI 6022

For the measurement of volume flow rates in ducts with contaminated air

Plastic circular volume flow rate measuring units for the recording or monitoring of volume flow rates

- Manual volume flow rate measuring
- Permanent volume flow rate measuring
- Recording of measured values for other controllers or for the LABCONTROL air management system
- Pressure transducer for the automatic recording of measured values, factory assembled and complete with wiring and tubing
- Casing made of flame-resistant polypropylene (PPs)
- Casing air leakage to EN 15727, class C

Optional equipment and accessories

■ With flanges on both ends

General information

Туре		Page
VMRK	General information	4.1 – 28
	Order code	4.1 – 30
	Aerodynamic data	4.1 – 33
	Dimensions and weight – VMRK	4.1 – 34
	Dimensions and weight – VMRK-FL	4.1 – 35
	Installation details	4.1 – 36
	Specification text	4.1 – 37
	Basic information and nomenclature	4.3 – 1

Variants

Product examples

Volume flow rate measuring unit, variant VMRK

Description

For detailed information on pressure transducers see chapter K5 - 4.2.

For detailed information on the LABCONTROL control system see the Control Systems catalogue.

Application

- Plastic circular volume flow rate measuring units Type VMRK for the manual or automatic measuring of volume flow rates
- Suitable for contaminated air
- Simplified commissioning, approval and maintenance
- Suitable for permanent installation because of low differential pressure

Variants

- VMRK: Volume flow rate measuring unit
- VMRK-FL: Volume flow rate measuring unit with flanges on both ends

Nominal sizes

- 125, 160, 200, 250, 315, 400

Attachments

- Static differential pressure transducer
- LABCONTROL components for air management systems

Accessories

Matching flanges for both ends

Special features

- Measurement accuracy ± 5 % even with unfavourable upstream conditions
- Effective pressure range: approx. 5 250 Pa
- Low differential pressure of only about 15 - 24 % of the measured effective pressure

Volume flow rate measuring unit, variant VMRK-FL

Parts and characteristics

- Ready-to-commission unit which consists of the mechanical parts and an optional pressure transducer
- Averaging differential pressure sensor for volume flow rate measurement; can be removed for cleaning
- Optional factory-assembled pressure transducers complete with wiring and tubing
- High measurement accuracy (even with upstream bend R = 1D)

Construction features

- Circular casing
- Spigot suitable for ducts according to DIN 8077
- Connecting nipple for tubes with 6 mm inside diameter

Materials and surfaces

- Casing made of flame-resistant polypropylene (PPs)
- Differential pressure sensor made of polypropylene (PP)

Installation and commissioning

- Installation orientation is relevant
- Static differential pressure transducer: Check zero point and correct, if necessary

Standards and guidelines

- Hygiene conforms to VDI 6022
- Casing air leakage to EN 15727, class C

Maintenance

- Maintenance-free as construction and materials are not subject to wear
- Zero point correction of the static differential pressure transducer should be carried out once per year (recommendation)

Attachments: VARYCONTROL differential pressure transducer for Type VMRK

Order code detail	detail Differential pressure transducer			
Universal				
BB0	Universal controller with separate differential pressure transducer TROX/Belimo	Static		

Attachments: LABCONTROL differential pressure transducer for Type VMRK

Order code detail	Measurement principle	
EASYLAB		
ELAB	Static	
TCU-LON-II		
TMO	Electronic controller TCU-LON-II with LonWorks interface	Static

Technical data

Nominal sizes	125 – 400 mm
Volume flow rate range	25 – 1680 l/s or 90 – 6048 m³/h
Measurement accuracy	\pm 5 % of the measured value
Effective pressure range	approx. 5 – 250 Pa
Measuring unit differential pressure (pressure loss)	15 – 24 % of the measured effective pressure
Operating temperature	10 – 50 °C

Order code
VARYCONTROL

VMRK

1 Type

VMRK Volume flow rate measuring unit, plastic

2 Flange

No entry: none FL Flanges on both ends

3 Nominal size [mm]

125 160

160 200

250 315

400

4 Accessories

No entry: none

GK Matching flanges for both ends

5 Attachments

(differential pressure transducer)

No entry: none

BB0 Static differential pressure transducer

Order example VARYCONTROL

VMRK/160/BB0

Nominal size

Differential pressure transducer

160 mm Static Order code

LABCONTROL

EASYLAB

VMRK with EASYLAB for the recording of measured values

1 Type

VMRK Volume flow rate measuring unit, plastic

2 Flange

No entry: none

FL Flanges on both ends

3 Nominal size [mm]

125

160

200

250

315

400

4 Accessories

No entry: none

GK Matching flanges for both ends

5 Attachments

ELAB EASYLAB TCU3

6 Equipment function

EC Extract air recording

7 Voltage range for the actual value signal

E0 Voltage signal 0 – 10 V DC

E2 Voltage signal 2 – 10 V DC

8 Module expansions

Option 1: Power supply No entry: 24 V AC

T EM-TRF for 230 V AC

U EM-TRF-USV for 230 V AC, provides uninterruptible power supply (UPS)

Option 2: Communication interface

No entry: none

L EM-LON for LonWorks FTT-10A

B EM-BAC-MOD-01 for BACnet MS/TP

M EM-BAC-MOD-01 for Modbus RTU

I EM-IP for BACnet/IP,

R

Modbus/IP and webserver

EM-IP with real time clock

Option 3: Automatic zero point correction

No entry: none

EM-AUTOZERO Solenoid valve for automatic zero point correction

Order code

LABCONTROL

EASYLAB

VMRK with EASYLAB for fume cupboard control with external signalling (frequency converter)

VMLK - FL / 160 / GK / ELAB / FH - VS / ULZS / 200 - 800

Т

1 Type

VMRK Volume flow rate measuring unit, plastic

2 Flange

No entry: none

FL Flanges on both ends

3 Nominal size [mm]

125

160

200

250

315

400

4 Accessories

No entry: none

GK Matching flanges for both ends

5 Attachments (control component)

ELAB EASYLAB controller TCU3

6 Equipment function

With face velocity transducer

FH-VS Face velocity control

With sash distance sensor

FH-DS Linear control strategy

FH-DV Safety-optimised control strategy

With switching steps

for on-site switch contacts

FH-2P 2 switching steps

FH-3P 3 switching steps

Without signalling

FH-F Volume flow rate constant value

7 Expansion modules

Option 1: Supply voltage

No entry: 24 V AC

EM-TRF for 230 V AC

U EM-TRF-USV for 230 V AC, provides uninterruptible power supply (UPS)

Option 2: Communication interface

No entry: none

L EM-LON for LonWorks FTT-10A

B EM-BAC-MOD-01 for BACnet MS/TP

M EM-BAC-MOD-01 for Modbus RTU

I EM-IP for BACnet/IP,

Modbus/IP and webserver

R EM-IP with real time clock

Option 3: Automatic zero point correction

No entry: none

Z EM-AUTOZERO Solenoid valve for automatic zero point correction

Option 4: Lighting

No entry: none

S EM-LIGHT Wired socket for the connection of lighting and for switching the lighting on/off using the control panel (only with EM-TRF or EM-TRF-USV)

8 Operating values [m³/h or l/s]

Depending on the equipment function

VS: $\dot{V}_{min} - \dot{V}_{max}$

DS: $\dot{V}_{min} - \dot{V}_{max}$

DV: $\dot{V}_{min} - \dot{V}_{max}$

2P: $\dot{V}_1^{11} \dot{V}_2$

3P: $\dot{V}_1 / \dot{V}_2 / \dot{V}_3$

F: V₁

Useful additions

Control panel for fume cupboard controller, for displaying the functions of the control system according to EN 14175

BE-SEG-** 2-character display
BE-LCD-01 40-character display

Volume flow rate ranges

Nominal size	V _N	enn	\dot{V}_{min}		C-Wert		Δp _{st}	ΔŸ
Nominal Size	l/s	m³/h	l/s	m³/h	l/s	m³/h	%	± %
125	150	540	25	90	8.6	31	24	5
160	250	900	40	144	15.1	54	22	5
200	405	1458	65	234	24.3	87	19	5
250	615	2214	95	342	38.0	137	17	5
315	1030	3708	155	558	62.0	223	15	5
400	1680	6048	255	918	102.7	370	15	5

K value for air density 1.2 kg/m 3 , Δp_{st} in relation to the measured effective pressure

Volume flow rate calculation

Calculation conditions

- The volume flow rate is calculated based on the measured effective pressure.
- The effective pressure is measured using an electronic manometer or an inclined tube manometer
- Air density $\rho = 1.2 \text{ kg/m}^3$

Volume flow rate calculation for air density 1.2 kg/m³

$$\dot{V} = C \times \sqrt{\Delta p_{_{W}}}$$

Volume flow rate calculation for other air densities

$$\dot{V} = C \times \sqrt{\Delta p_{_{w}}} \times \sqrt{\frac{1.2}{\rho}}$$

Calculation example

Given data

- VMRK/160
- Δp_w = 100 Pa (manometer reading of effective pressure)
- Volume flow rate V [m³/h]

Unit data

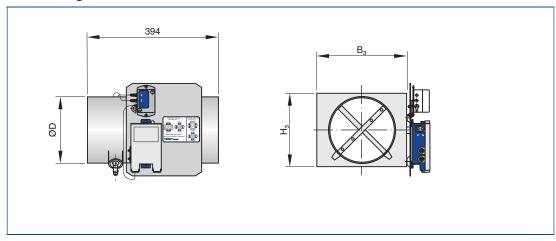
- K value from table: $K = 54 \text{ m}^3/\text{h} (15.1 \text{ l/s})$

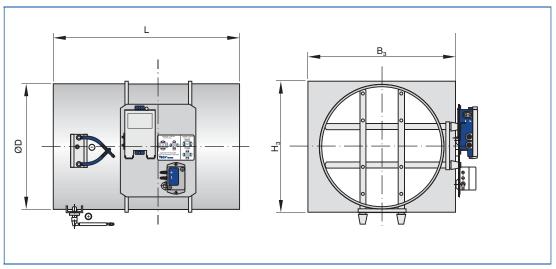
Calculation procedure

$$\dot{V} = 15.9 \times \sqrt{100}$$

 $\dot{V} = 159 \text{ l/s}$

Description


- Volume flow rate measuring unit
- Spigot to make connections to the ducting


Volume flow rate measuring unit, variant VMRK

Dimensions

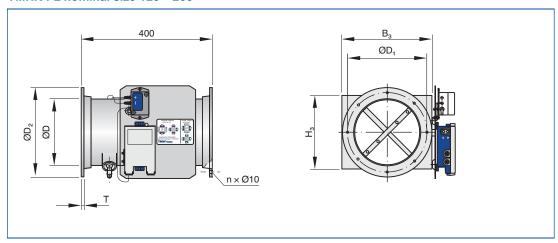
VMRK Nenngröße 125 – 200

VMRK nominal sizes 250 - 400

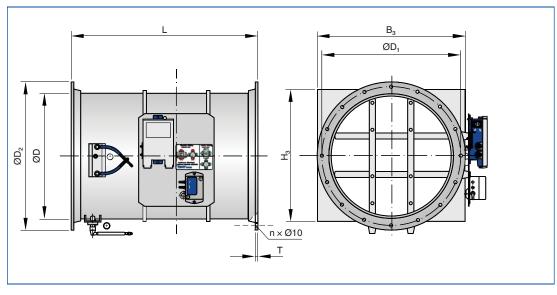
Dimensions [mm] and weight [kg]

Nominal size	ØD	L	B ₃	H ₃	m
Nominal Size		kg			
125	125	394	195	145	2.0
160	160	394	230	180	2.2
200	200	394	270	220	2.5
250	250	594	320	270	3.5
315	315	594	385	335	5.1
400	400	594	470	420	6.9

Description



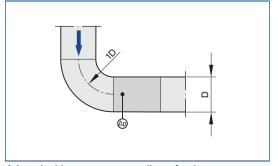
Volume flow rate measuring unit, variant VMRK-FL


- Volume flow rate measuring unit
- With flanges on both ends to make detachable connections to the ducting

Dimensions

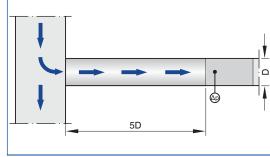
VMRK-FL nominal size 125 - 200

VMRK-FL nominal size 250 - 400


Dimensions [mm] and weight [kg]

Nominal size	ØD	L	B ₃	H ₃	ØD ₁	$ØD_2$	n	Т	m
Nominal Size			m	m			n	mm	kg
125	125	400	195	145	165	185	8	8	2.2
160	160	400	230	180	200	230	8	8	2.6
200	200	400	270	220	240	270	8	8	3.0
250	250	600	320	270	290	320	12	8	4.4
315	315	600	385	335	350	395	12	10	6.1
400	400	600	470	420	445	475	16	10	8.2

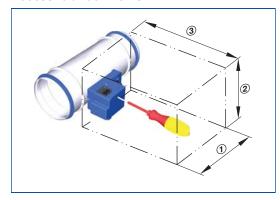
Upstream conditions


The volume flow rate accuracy $\Delta\dot{V}$ applies to a straight upstream section of the duct. Bends, junctions or a narrowing or widening of the duct cause turbulence that may affect measurement. Duct connections, e.g. branches off the main duct, must comply with EN 1505. Some installation situations require straight duct sections upstream.

Bend

A bend with a curvature radius of at least 1D – without an additional straight duct section upstream of the volume flow rate measuring unit – has only a negligible effect on the volume flow rate accuracy.

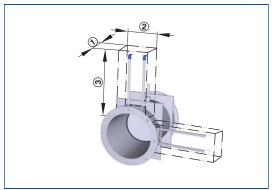
Junction



A junction causes strong turbulence. The stated volume flow rate accuracy $\Delta\dot{V}$ can only be achieved with a straight duct section of at least 5D upstream. Shorter upstream sections require a perforated plate in the branch and before the measuring unit. If there is no straight upstream section at all, the actual value signal may not be stable, even with a perforated plate.

Space requirement for commissioning and maintenance

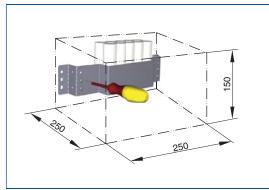
Sufficient space must be kept clear near any attachments to allow for commissioning and maintenance. It may be necessary to provide sufficiently sized inspection access openings.


Access to attachments

Space required

Attachments	1	2	3		
Attacimients	mm				
Without attachments	200	200	200		
VARYCONTROL					
Universal controller	300	320	300		
LABCO	ONTROL				
EASYLAB	350	350	400		

Access to sensor tubes for cleaning



Space required

Nominal size	1	2	3
Noniniai Size		mm	
125 – 200	100	100	D
250 – 400	100	160	D

D: Casing diameter

Access to attachments

Separate space for fixing and accessing the battery pack (LABCONTROL EASYLAB accessory)

Standard text

This specification text describes the general properties of the product. Texts for variants can be generated with our Easy Product Finder design programme. Plastic (PPs) circular volume flow rate measuring unit for the measurement of volume flow rates in air conditioning systems, available in 6 nominal sizes. For the manual volume flow rate measuring or for the permanent monitoring of the actual value signal. Ready-to-commission unit which consists of the casing with an averaging differential pressure sensor. Spigot, suitable for ducts according to DIN 8077. Casing air leakage to EN 15727, class C.

Special features

- Measurement accuracy ± 5 % even with unfavourable upstream conditions
- Effective pressure range: approx. 5 250 Pa
- Low differential pressure of only about 15 – 24 % of the measured effective pressure

Materials and surfaces

- Casing made of flame-resistant polypropylene (PPs)
- Differential pressure sensor made of polypropylene (PP)

Technical data

- Nominal sizes: 125 400 mm
- Volume flow rate range:
 25 to 1680 l/s or 90 to 6048 m³/h
- Effective pressure range: approx. 5 250 Pa
- Measuring unit differential pressure (pressure loss):
 - 15 24 % of the measured effective pressure
- Operating temperature: 10 to 50 °C

Attachments

Volume flow rate measurement with static differential pressure transducer emitting an actual value signal for integration into the central BMS.

- Supply voltage 24 V AC/DC
- Signal voltages 0 10 V DC or 2 10 V DC
- TCU-LON-II: Integration with LonWorks
- EASYLAB: Integration using either 0 10 V DC signals or expansion modules (LonWorks, BACnet MS/TP, Modbus RTU)

Sizing data

 $-\dot{V}[m^3/h]$

Order options VARYCONTROL

1 Type

VMRK Volume flow rate measuring unit, plastic

2 Flange

No entry: none

☐ **FL** Flanges on both ends

3 Nominal size [mm]

□ 125

□ 160

□ 200

□ 250 □ 315

□ 400

4 Accessories

No entry: none

 \square **GK** Matching flanges for both ends

5 Attachments

(differential pressure transducer)

No entry: none

BB0 Static differential pressure transducer

Order options

LABCONTROL

EASYLAB

1 Type VMRK	Volume flow rate measuring unit, plastic	6 Equip □ EC	oment function Extract air recording
2 Flang □ FL	No entry: none Flanges on both ends	7 Voltag ☐ E0 ☐ E2	ge range for the actual value signal Voltage signal 0 – 10 V DC Voltage signal 2 – 10 V DC
3 Nomi ☐ 125 ☐ 160 ☐ 200 ☐ 250 ☐ 315	nal size [mm]	B Modu	Option 1: Power supply No entry: 24 V AC EM-TRF for 230 V AC EM-TRF-USV for 230 V AC, provides uninterruptible power supply (UPS)
☐ 400 4 Acces ☐ GK ☐ Attac ELAB	No entry: none Matching flanges for both ends	L	Option 2: Communication interface No entry: none EM-LON for LonWorks FTT-10A EM-BAC-MOD-01 for BACnet MS/TP EM-BAC-MOD-01 for Modbus RTU EM-IP for BACnet/IP, Modbus/IP and webserver EM-IP with real time clock
			Option 3: Automatic zero point correction No entry: none

 \square Z

EM-AUTOZERO Solenoid valve for automatic zero point correction

Order options

LABCONTROL

EASYLAB

1 Type VMRK	Volume flow rate measuring unit, plastic
2 Flang	e
□ FL	No entry: none Flanges on both ends
3 Nomin ☐ 125 ☐ 160 ☐ 200 ☐ 250 ☐ 315 ☐ 400	nal size [mm]
4 Acces	sories
	No entry: none
□ GK	Matching flanges for both ends
5 Attach	nments (control component) EASYLAB controller TCU3
6 Equip	ment function
	With face velocity transducer
☐ FH-VS	Face velocity control
	With sash distance sensor
	SLinear control strategy Safety-optimised control strategy
	With switching steps
	for on-site switch contacts
☐ FH-2P	2 switching steps
☐ FH-3P	3 switching steps
	Without signalling
☐ FH-F	Volume flow rate constant value

7 Expar	nsion modules Option 1: Supply voltage
□ T □ U	No entry: 24 V AC EM-TRF for 230 V AC EM-TRF-USV for 230 V AC, provides uninterruptible power supply (UPS)
□ L □ B □ M □ I	Option 2: Communication interface No entry: none EM-LON for LonWorks FTT-10A EM-BAC-MOD-01 for BACnet MS/TP EM-BAC-MOD-01 for Modbus RTU EM-IP for BACnet/IP, Modbus/IP and webserver EM-IP with real time clock
□ z	Option 3: Automatic zero point correction No entry: none EM-AUTOZERO Solenoid valve for automatic zero point correction
□S	Option 4: Lighting No entry: none EM-LIGHT Wired socket for the connection of lighting and for switching the lighting on/off using the control panel (only with EM-TRF or EM-TRF-USV)
8 Opera	ting values [m³/h or l/s] Depending on the equipment function VS: $\dot{V}_{min} - \dot{V}_{max}$ DS: $\dot{V}_{min} - \dot{V}_{max}$ DV: $\dot{V}_{min} - \dot{V}_{max}$ 2P: \dot{V}_1 / \dot{V}_2 3P: $\dot{V}_1 / \dot{V}_2 / \dot{V}_3$

Useful additions

F: V₁

Control panel for fume cupboard controller, for displaying the functions of the control system according to EN 14175

□ BE-SEG-** 2-character display□ BE-LCD-01 40-character display

Volume flow rate measurement Basic information and nomenclature

- Product selection
- Principal dimensions
- Nomenclature
- Construction
- Sizing and sizing example

Volume flow rate measurement

Basic information and nomenclature

Product selection

	Туре			
	VMR	VME	VMRK	VMLK
Type of system				
Supply air	•	•	•	•
Extract air	•	•	•	•
Duct connection				
Circular	•		•	•
Rectangular		•		
Volume flow rate range				
Up to [m³/h]	6048	36360	6048	1854
Up to [l/s]	1680	10100	1680	515
Air quality				
Filtered	•	•	•	•
Office extract air	•	•	•	•
Polluted	0	0	•	•
Contaminated	0	0	•	•
Volume flow rate measurement				
Manually	•	•	•	
Automatically	0	0	0	•
Special areas				
Labs, clean rooms, operating theatres (EASYLAB, TCU-LON II)	•	•	•	•
•	Possible			
0	Possible under certain conditions: Robust unit variant and/or specific differential pressure transducer			
	Not possible			

4

4

Volume flow rate measurement

Basic information and nomenclature

Principal dimensions

ØD [mm]

VAV terminal units made of stainless steel: Outside diameter of the spigot VAV terminal units made of plastic: Inside diameter of the connecting spigot

ØD₁ [mm]

Pitch circle diameter of flanges

$ØD_2$ [mm]

Outside diameter of flanges

$\emptyset D_4$ [mm]

Inside diameter of the screw holes of flanges

L [mm]

Length of unit including connecting spigot

∟₁ [mm

Length of casing or acoustic cladding

B [mm]

Duct width

B₁ [mm]

Screw hole pitch of flange (horizontal)

B₂ [mm]

Outside dimension of flange (width)

B_3 [mm]

Width of device

H [mm]

Duct height

H₁ [mm]

Screw hole pitch of flange (vertical)

H_2 [mm]

Outside dimension of flange (height)

H_3 [mm]

Unit height

n [

Number of flange screw holes

T [mm]

Flange thickness

m [kg]

Weight including attachments for the automatic differential pressure measurement

Nomenclature

\dot{V}_{nom} [m³/h] and [l/s]

Nominal volume flow rate (100 %)

\dot{V}_{min} [m³/h] and [l/s]

Volume flow rate

Δ['] [± %]

Volume flow rate accuracy

K value [m³/h] and [l/s]

Unit-related constant for air density 1.2 kg/m3

Δp_w [Pa]

Effective pressure

Δp_{st} [%]

Static differential pressure in relation to the measured effective pressure

Constructions

Galvanised sheet steel

- Casing made of galvanised sheet steel
- Parts in contact with the airflow as described for the product type
- External parts, e.g. mounting brackets or covers, are usually made of galvanised sheet steel

Powder-coated surface (P1)

- Casing made of galvanised sheet steel, powder-coated RAL 7001, silver grey
- Parts in contact with the airflow are powder-coated or made of plastic
- Due to production, some parts that come into contact with the airflow may be stainless steel or aluminium, powder-coated
- External parts, e.g. mounting brackets or covers, are usually made of galvanised sheet steel

Stainless steel (A2)

- Casing made of stainless steel 1.4201
- Parts in contact with the airflow are powder-coated or made of stainless steel
- External parts, e.g. mounting brackets or covers, are usually made of galvanised sheet steel

This catalogue provides convenient quick sizing tables for volume flow rate measuring unit, based on aerodynamic data. Volume flow rate ranges are provided for all nominal sizes.

Sizing example

Given data

 $\dot{V}_{max} = 280 \text{ l/s } (1010 \text{ m}^3/\text{h})$

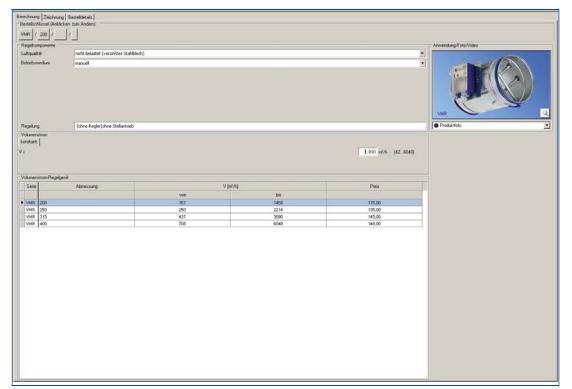
Quick sizing

VMR/200

 $C = 25.5 \text{ l/s} (92 \text{ m}^3/\text{h})$

 $\Delta p_{st} = 19 \%$

 $\Delta p_w = 121 \text{ Pa}$


 $\Delta p_{st} = 23 \text{ Pa } (121 \text{ Pa} \times 0,19)$

Easy Product Finder

The Easy Product Finder allows you to size products using your project-specific data.

You will find the Easy Product Finder on our website.

4